Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2n-dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a new “Quantum singular value transformation” algorithm that can directly harness the advantages of exponential dimensionality by applying polynomial transformations to the singular values of a block of a unitary operator. The transformations are realized by quantum circuits with a very simple structure - typically using only a constant number of ancilla qubits - leading to optimal algorithms with appealing constant factors. We show that our framework allows describing many quantum algorithms on a high level, and enables remarkably concise proofs for many prominent quantum algorithms, ranging from optimal Hamiltonian simulation to various quantum machine learning applications. We also devise a new singular vector transformation algorithm, describe how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum, and show how to efficiently implement principal component regression. Finally, we also prove a quantum lower bound on spectral transformations.

[1]  Martin Schwarz,et al.  An Information-Theoretic Proof of the Constructive Commutative Quantum Lovász Local Lemma , 2013, ArXiv.

[2]  Srinivasan Arunachalam,et al.  Optimizing quantum optimization algorithms via faster quantum gradient computation , 2017, SODA.

[3]  P. Høyer Arbitrary phases in quantum amplitude amplification , 2000, quant-ph/0006031.

[4]  A. Eremenko,et al.  Uniform approximation of sgn x by polynomials and entire functions , 2006, math/0604324.

[5]  Maris Ozols,et al.  Quantum Walks Can Find a Marked Element on Any Graph , 2010, Algorithmica.

[6]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[7]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[8]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[9]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[10]  A. Eremenko,et al.  Polynomials of the best uniform approximation to sgn(x) on two intervals , 2010, 1008.3765.

[11]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[12]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[13]  Ashley Montanaro,et al.  Sequential measurements, disturbance and property testing , 2016, SODA.

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  Stacey Jeffery,et al.  A Time-Efficient Quantum Walk for 3-Distinctness Using Nested Updates , 2013, ArXiv.

[16]  Mario Szegedy,et al.  Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule , 2004, quant-ph/0401053.

[17]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[18]  Or Sattath,et al.  On Preparing Ground States of Gapped Hamiltonians: An Efficient Quantum Lovász Local Lemma , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Scott Aaronson,et al.  Quantum money from hidden subspaces , 2012, STOC '12.

[20]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  Nisheeth K. Vishnoi,et al.  Faster Algorithms via Approximation Theory , 2014, Found. Trends Theor. Comput. Sci..

[22]  Lov K. Grover,et al.  Fixed-point quantum search. , 2005, Physical review letters.

[23]  Iordanis Kerenidis,et al.  Quantum classification of the MNIST dataset via Slow Feature Analysis , 2018, ArXiv.

[24]  Aleksandrs Belovs Variations on Quantum Adversary , 2015 .

[25]  Carlos Palazuelos,et al.  Quantum Query Algorithms are Completely Bounded Forms , 2017, ITCS.

[26]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[27]  I. Chuang,et al.  Hamiltonian Simulation by Uniform Spectral Amplification , 2017, 1707.05391.

[28]  Jeongwan Haah,et al.  Product Decomposition of Periodic Functions in Quantum Signal Processing , 2018, Quantum.

[29]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[30]  Theodore J. Yoder,et al.  Fixed-point quantum search with an optimal number of queries. , 2014, Physical review letters.

[31]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[32]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  A. Simon,et al.  Quantum Fast-Forwarding Markov Chains , 2018 .

[35]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[36]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[37]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[38]  András Gilyén,et al.  Quantum Singular Value Transformation & Its Algorithmic Applications , 2019 .

[39]  A. Aleksandrov,et al.  Operator Lipschitz functions , 2016, 1602.07994.

[40]  Yu. B. Farforovskaya,et al.  Modulus of continuity of operator functions , 2009 .

[41]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[42]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[43]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[44]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[45]  András Gilyén,et al.  Improvements in Quantum SDP-Solving with Applications , 2018, ICALP.

[46]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[47]  Krysta Marie Svore,et al.  Quantum Speed-ups for Semidefinite Programming , 2016, ArXiv.

[48]  Isaac L. Chuang,et al.  Methodology of Resonant Equiangular Composite Quantum Gates , 2016, 1603.03996.

[49]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[50]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[51]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[52]  Andris Ambainis,et al.  A quantum lovász local lemma , 2009, STOC '10.

[53]  Xiaodi Wu,et al.  Exponential Quantum Speed-ups for Semidefinite Programming with Applications to Quantum Learning , 2017, ArXiv.

[54]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[55]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[56]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[57]  Aaron Sidford,et al.  Principal Component Projection Without Principal Component Analysis , 2016, ICML.

[58]  Scott Aaronson,et al.  Quantum Copy-Protection and Quantum Money , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[59]  Ming-Xing Luo,et al.  Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity , 2017, International Journal of Theoretical Physics.

[60]  V. Peller,et al.  Operator Lipschitz functions (English translation) , 2016 .

[61]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[62]  Or Sattath,et al.  A constructive quantum Lovasz local lemma for commuting projectors , 2013, Quantum Inf. Comput..

[63]  Nathan Wiebe,et al.  Hardening quantum machine learning against adversaries , 2017, New Journal of Physics.

[64]  John H. Reif,et al.  An Efficient Algorithm for the Complex Roots Problem , 1996, J. Complex..

[65]  C. Jordan Essai sur la géométrie à $n$ dimensions , 1875 .

[66]  Xiaodi Wu,et al.  Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning , 2017, ICALP.

[67]  Maris Ozols,et al.  Hamiltonian simulation with optimal sample complexity , 2016, npj Quantum Information.

[68]  Peter Høyer,et al.  Controlled Quantum Amplification , 2017, ICALP.

[69]  M. Mosca,et al.  Approximating fractional time quantum evolution , 2008, 0810.3843.

[70]  R. Feynman Simulating physics with computers , 1999 .

[71]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[72]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[73]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[74]  C.L. Dolph,et al.  A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level , 1946, Proceedings of the IRE.

[75]  Joran van Apeldoorn,et al.  Quantum algorithms for zero-sum games , 2019, 1904.03180.

[76]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[77]  Andris Ambainis,et al.  Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.

[78]  Katalin Friedl Quantum walk based search methods and algorithmic applications , 2014 .

[79]  Peter W. Shor,et al.  Why haven't more quantum algorithms been found? , 2003, JACM.

[80]  Rolando D. Somma,et al.  Quantum algorithms for Gibbs sampling and hitting-time estimation , 2016, Quantum Inf. Comput..