Robust Estimation and Applications in Robotics

Solving estimation problems is a fundamental component of numerousrobotics applications. Prominent examples involve pose estimation, pointcloud alignment, or object tracking. Algorithms for solving these estimationproblems need to cope with new challenges due to an increased use of potentiallypoor low-cost sensors, and an ever growing deployment of roboticalgorithms in consumer products which operate in potentially unknown environments.These algorithms need to be capable of being robust against strongnonlinearities, high uncertainty levels, and numerous outliers. However, particularlyin robotics, the Gaussian assumption is prevalent in solutions to multivariateparameter estimation problems without providing the desired level ofrobustness.The goal of this tutorial is helping to address the aforementioned challengesby providing an introduction to robust estimation with a particularfocus on robotics. First, this is achieved by giving a concise overview of thetheory on M-estimation. M-estimators share many of the convenient propertiesof least-squares estimators, and at the same time are much more robustto deviations from the Gaussian model assumption. Second, we present severalexample applications where M-Estimation is used to increase robustnessagainst nonlinearities and outliers.

[1]  Niko Sünderhauf,et al.  Switchable constraints for robust pose graph SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  B. Ripley,et al.  Robust Statistics , 2018, Wiley Series in Probability and Statistics.

[4]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[5]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[6]  Marc Pollefeys,et al.  Robust pose-graph loop-closures with expectation-maximization , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[8]  Wolfram Burgard,et al.  Robust map optimization using dynamic covariance scaling , 2013, 2013 IEEE International Conference on Robotics and Automation.

[9]  Michael B. Miller Linear Regression Analysis , 2013 .

[10]  R. Siegwart,et al.  Self-supervised calibration for robotic systems , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[11]  Robust linear regression via bounded influence M -estimators , 1992 .

[12]  Michael Muma,et al.  Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts , 2012, IEEE Signal Processing Magazine.

[13]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[14]  Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration , 2004 .

[15]  Christopher Zach,et al.  Robust Bundle Adjustment Revisited , 2014, ECCV.

[16]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  S. Neugebauer Robust Analysis of M-Estimators of Nonlinear Models , 1996 .

[18]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[19]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[20]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[21]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[22]  Niko Sünderhauf,et al.  Towards a robust back-end for pose graph SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[23]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[24]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[25]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[26]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  S. Sheather,et al.  Robust Estimation and Testing , 1990 .

[28]  Tom Drummond,et al.  Student-tMixture Filter for Robust, Real-Time Visual Tracking , 2008, ECCV.

[29]  Roland Siegwart,et al.  Self-tuning M-estimators , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[31]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[33]  R. Martin,et al.  Bias Robust Estimation of Scale , 1993 .

[34]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[35]  Max Mether The history of the central limit theorem , 2003 .

[36]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[37]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[38]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[39]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[40]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[41]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[42]  Niko Sünderhauf,et al.  Switchable constraints vs. max-mixture models vs. RRR - A comparison of three approaches to robust pose graph SLAM , 2013, 2013 IEEE International Conference on Robotics and Automation.

[43]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[44]  Kiseon Kim,et al.  Why Gaussianity? , 2008, IEEE Signal Processing Magazine.

[45]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[46]  Eduardo Mario Nebot,et al.  Robust Inference of Principal Road Paths for Intelligent Transportation Systems , 2011, IEEE Transactions on Intelligent Transportation Systems.

[47]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[48]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[49]  Serge Gratton,et al.  Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems , 2007, SIAM J. Optim..

[50]  Frank Dellaert,et al.  Selecting good measurements via ℓ1 relaxation: A convex approach for robust estimation over graphs , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Stefan Schaal,et al.  A Kalman filter for robust outlier detection , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[53]  John J. Leonard,et al.  Robust incremental online inference over sparse factor graphs: Beyond the Gaussian case , 2013, 2013 IEEE International Conference on Robotics and Automation.

[54]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[55]  Jerry Eriksson,et al.  Truncated Gauss–Newton algorithms for Ill-conditioned nonlinear least squares problems , 2004, Optim. Methods Softw..

[56]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .