Dendrites enable a robust mechanism for neuronal stimulus selectivity

Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

[1]  Peter Somogyi,et al.  Cell Type- and Subcellular Position-Dependent Summation of Unitary Postsynaptic Potentials in Neocortical Neurons , 2002, The Journal of Neuroscience.

[2]  Bert Sakmann,et al.  Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo , 2014, Proceedings of the National Academy of Sciences.

[3]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[4]  J. Magee,et al.  Structured Synaptic Connectivity between Hippocampal Regions , 2014, Neuron.

[5]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[6]  Wolfgang Maass,et al.  Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons , 2011, The Journal of Neuroscience.

[7]  Mary Ann Go,et al.  Targeted pruning of a neuron’s dendritic tree via femtosecond laser dendrotomy , 2016, Scientific Reports.

[8]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[9]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[11]  Daniel N Hill,et al.  Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo , 2013, Proceedings of the National Academy of Sciences.

[12]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[13]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[14]  Bartlett W. Mel,et al.  Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model , 2009, Neuron.

[15]  Boris S. Gutkin,et al.  Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions , 2013, PLoS Comput. Biol..

[16]  Inki Kim,et al.  Disparate roles of zinc in chemical hypoxia-induced neuronal death , 2015, Front. Cell. Neurosci..

[17]  L. Cathala,et al.  Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity , 2012, Neuron.

[18]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[19]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[20]  Tobias Bonhoeffer,et al.  Activity-Dependent Clustering of Functional Synaptic Inputs on Developing Hippocampal Dendrites , 2011, Neuron.

[21]  Alon Poleg-Polsky,et al.  Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes , 2015, PloS one.

[22]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[23]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[24]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[26]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[27]  Boris S. Gutkin,et al.  Spiking and saturating dendrites differentially expand single neuron computation capacity , 2012, NIPS.

[28]  M. Häusser,et al.  Synaptic function: Dendritic democracy , 2001, Current Biology.

[29]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[30]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[31]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[32]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[33]  Claudia Clopath,et al.  On the distribution and function of synaptic clusters in dendrites , 2017, bioRxiv.

[34]  Anne-Marie M Oswald,et al.  Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. , 2008, Journal of neurophysiology.

[35]  B. Sakmann,et al.  Dendritic Spikes in Apical Dendrites of Neocortical Layer 2/3 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[36]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[37]  Cam Ha T. Tran,et al.  Acute two-photon imaging of the neurovascular unit in the cortex of active mice , 2015, Front. Cell. Neurosci..

[38]  Boris S. Gutkin,et al.  Contribution of sublinear and supralinear dendritic integration to neuronal computations , 2015, Front. Cell. Neurosci..

[39]  R. Yuste,et al.  Input Summation by Cultured Pyramidal Neurons Is Linear and Position-Independent , 1998, The Journal of Neuroscience.

[40]  Romain Brette,et al.  What Is the Most Realistic Single-Compartment Model of Spike Initiation? , 2015, PLoS Comput. Biol..

[41]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[42]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.