Existence, Uniqueness, and Optimality of Sibling-Property Codes for Infinite Sources
暂无分享,去创建一个
[1] Julia Abrahams. Huffman-type codes for infinite source distributions , 1994, Proceedings of IEEE Data Compression Conference (DCC'94).
[2] Gyula O. H. Katona,et al. Huffman codes and self-information , 1976, IEEE Trans. Inf. Theory.
[3] David C. van Voorhis,et al. Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[4] Te Sun Han,et al. Huffman coding with an infinite alphabet , 1996, IEEE Trans. Inf. Theory.
[5] David A. Huffman,et al. A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.
[6] Alfredo Viola,et al. Optimal prefix codes for some families of two-dimensional geometric distributions , 2006, Data Compression Conference (DCC'06).
[7] Robert G. Gallager,et al. Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.
[8] Leon Gordon Kraft,et al. A device for quantizing, grouping, and coding amplitude-modulated pulses , 1949 .
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] Pierre A. Humblet,et al. Optimal source coding for a class of integer alphabets (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[11] Neri Merhav,et al. Optimal prefix codes for sources with two-sided geometric distributions , 2000, IEEE Trans. Inf. Theory.
[12] Brockway McMillan,et al. Two inequalities implied by unique decipherability , 1956, IRE Trans. Inf. Theory.
[13] Vahid Tarokh,et al. Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.