MOCell: A cellular genetic algorithm for multiobjective optimization

This paper introduces a new cellular genetic algorithm for solving multiobjective continuous optimization problems. Our approach is characterized by using an external archive to store nondominated solutions and a feedback mechanism in which solutions from this archive randomly replace existing individuals in the population after each iteration. The result is a simple and elitist algorithm called MOCell. Our proposal has been evaluated with both constrained and unconstrained problems and compared against NSGA‐II and SPEA2, two state‐of‐the‐art evolutionary multiobjective optimizers. For the studied benchmark, our experiments indicate that MOCell obtains competitive results in terms of convergence and hypervolume, and it clearly outperforms the other two compared algorithms concerning the diversity of the solutions along the Pareto front. © 2009 Wiley Periodicals, Inc.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Tadahiko Murata,et al.  Cellular Genetic Algorithm for Multi-Objective Optimization , 2001 .

[3]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[4]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[5]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[6]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[7]  Enrique Alba,et al.  A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[8]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[9]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[10]  Michael Kirley,et al.  MEA: a metapopulation evolutionary algorithm for multi-objective optimisation problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  Kenneth A. De Jong,et al.  An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms , 1996, PPSN.

[12]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[14]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[15]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[16]  H. Keselman,et al.  Multiple Comparison Procedures , 2005 .

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[20]  Enrique Alba,et al.  Decentralized Cellular Evolutionary Algorithms , 2005, Handbook of Bioinspired Algorithms and Applications.

[21]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[22]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[23]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .