Aerosol optical depth enhancement in partly cloudy conditions

1. Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352 2. Department of Atmospheric Science, University of Washington, Seattle, WA 98095 3. Colorado State University, Cooperative Institute for Research in the Atmosphere, Fort Collins, CO 80523 4. Air Resources Division, National Park Service Fort Collins, CO 80523 5. Western Regional Air Partnership, Western Governors’ Association, Fort Collins, CO 80523

[1]  Norman G. Loeb,et al.  An Observational Study of the Relationship Between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions , 2013 .

[2]  G. Feingold,et al.  The scale problem in quantifying aerosol indirect effects , 2011 .

[3]  Alexander Marshak,et al.  Global CALIPSO Observations of Aerosol Changes Near Clouds , 2011, IEEE Geoscience and Remote Sensing Letters.

[4]  P. Gupta,et al.  Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem , 2010, Journal of the Air & Waste Management Association.

[5]  R. Bar-Or,et al.  Estimating cloud field coverage using morphological analysis , 2010 .

[6]  Johannes Quaas,et al.  Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model , 2009 .

[7]  R. Wood,et al.  Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean , 2009 .

[8]  Larry Di Girolamo,et al.  Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by satellite‐based lidar , 2009 .

[9]  A. Marshak,et al.  MODIS observations of enhanced clear sky reflectance near clouds , 2009 .

[10]  Cynthia H. Twohy,et al.  Effect of changes in relative humidity on aerosol scattering near clouds , 2008 .

[11]  L. Remer,et al.  How small is a small cloud , 2008 .

[12]  J. Norris,et al.  Meteorological bias in satellite estimates of aerosol‐cloud relationships , 2007 .

[13]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[14]  J. Coakley,et al.  Multiyear Advanced Very High Resolution Radiometer observations of summertime stratocumulus collocated with aerosols in the northeastern Atlantic , 2006 .

[15]  Yoram J. Kaufman,et al.  Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data , 2006 .

[16]  Lorraine Remer,et al.  A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. Chu,et al.  Improving National Air Quality Forecasts with Satellite Aerosol Observations , 2005 .

[18]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[19]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[20]  Patrick Minnis,et al.  Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets , 2004 .

[21]  Bruce Morley,et al.  Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements , 2003 .

[22]  W. Cotton,et al.  Autoconversion rate bias in stratiform boundary layer cloud parameterizations , 2002 .

[23]  Yoram J. Kaufman,et al.  MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability , 2002 .

[24]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[25]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[26]  J. Deardorff,et al.  Subgrid-Scale Condensation in Models of Nonprecipitating Clouds , 1977 .

[27]  George L. Mellor,et al.  The Gaussian Cloud Model Relations , 1977 .