Synthesis of virtual holonomic constraints with stable constraint dynamics

A virtual holonomic constraint (VHC) is a relation among the generalized coordinates of a mechanical system that can be made invariant via feedback control. The autonomous dynamics of the system resulting on the enforcement of the VHC are called the constraint dynamics. This work presents a method for the synthesis of VHCs that guarantees the existence of an asymptotically stable limit cycle on the constraint dynamics.

[1]  Luca Consolini,et al.  When Is a Lagrangian Control System with Virtual Holonomic Constraints Lagrangian? , 2013, NOLCOS.

[2]  R. Johansson,et al.  Periodic motions of the Pendubot via virtual holonomic constraints: Theory and experiments , 2008, Autom..

[3]  Luca Consolini,et al.  Path following for the PVTOL aircraft , 2010, Autom..

[4]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[5]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[6]  A. Shiriaev,et al.  Periodic motion planning for virtually constrained Euler-Lagrange systems , 2006, Syst. Control. Lett..

[7]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[8]  Luca Consolini,et al.  Control of a bicycle using virtual holonomic constraints , 2010, CDC.

[9]  Luca Consolini,et al.  Control of a bicycle using virtual holonomic constraints , 2010, 49th IEEE Conference on Decision and Control (CDC).

[10]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[11]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[12]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[13]  Luca Consolini,et al.  Synthesis of virtual holonomic constraints for 3-DOF mechanical systems , 2013, 52nd IEEE Conference on Decision and Control.

[14]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[15]  Luca Consolini,et al.  Further Results on Virtual Holonomic Constraints , 2012 .

[16]  Jun Nakanishi,et al.  A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..

[17]  Luca Consolini,et al.  Virtual Holonomic Constraints for Euler-Lagrange Systems , 2010 .

[18]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .