Origin of the prestellar core mass function and link to the IMF – Herschel first results

Abstract We briefly review ground-based (sub)millimeter dust continuum observations of the prestellar core mass function (CMF) and its connection to the stellar initial mass function (IMF). We also summarize the first results obtained on this topic from the Herschel Gould Belt survey, one of the largest key projects with the Herschel Space Observatory. Our early findings with Herschel confirm the existence of a close relationship between the CMF and the IMF. Furthermore, they suggest a scenario according to which the formation of prestellar cores occurs in two main steps: 1) complex networks of long, thin filaments form first, probably as a result of interstellar MHD turbulence; 2) the densest filaments then fragment and develop prestellar cores via gravitational instability.

[1]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[2]  M. Sauvage,et al.  Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel , 2010, 1005.3115.

[3]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[4]  R. Emery,et al.  Herschel -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale , 2010, 1005.2746.

[5]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[6]  M. Sauvage,et al.  A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE , 2010, 1005.2519.

[7]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[8]  P. Myers FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES , 2009, 0906.2005.

[9]  S. Basu,et al.  Structure Formation in Astrophysics: The formation and evolution of prestellar cores , 2008, 0801.4210.

[10]  G. Chabrier Structure formation in astrophysics , 2009 .

[11]  E. Rosolowsky,et al.  The Mass Distribution and Lifetime of Prestellar Cores in Perseus, Serpens, and Ophiuchus , 2008, 0805.1075.

[12]  Gilles Chabrier,et al.  Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores , 2008, 0805.0691.

[13]  L. Allen,et al.  The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of a Dense Embedded Cluster in the Serpens-Aquila Rift , 2007, 0712.3303.

[14]  Bonn,et al.  The relationship between the prestellar core mass function and the stellar initial mass function , 2007, 0711.1749.

[15]  M. Lombardi,et al.  The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.

[16]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[17]  A. Whitworth,et al.  The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function , 2007, 0705.2941.

[18]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[19]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[20]  Michael D. Smith,et al.  An unbiased search for the signatures of protostars in the ρ Ophiuchi molecular cloud , II. Millimetre continuum observations , 2005, astro-ph/0511093.

[21]  Alyson G. Wilson The dusty and molecular universe: a prelude to Herschel and ALMA , 2005 .

[22]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[23]  I. Bonnell,et al.  The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds , 2004, astro-ph/0411084.

[24]  D. Johnstone,et al.  An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.

[25]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[26]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[27]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[28]  D. Johnstone,et al.  Large Area Mapping at 850 Microns. III. Analysis of the Clump Distribution in the Orion B Molecular Cloud , 2001 .

[29]  S. Inutsuka The Mass Function of Molecular Cloud Cores , 2001 .

[30]  P. Andre',et al.  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001 .

[31]  M. Juvela,et al.  The Turbulent Shock Origin of Proto-Stellar Cores , 2000, astro-ph/0011122.

[32]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[33]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[34]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[35]  R. Klessen,et al.  The Formation of Stellar Clusters: Gaussian Cloud Conditions. I. , 1999, astro-ph/9904090.

[36]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[37]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[38]  Leonardo Testi,et al.  Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core , 1998, astro-ph/9809323.

[39]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[40]  S. Miyama,et al.  A Production Mechanism for Clusters of Dense Cores , 1997 .

[41]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[42]  R. Larson Cloud fragmentation and stellar masses , 1985 .

[43]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[44]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .