Coherent presentations of Artin monoids

We compute coherent presentations of Artin monoids, that is, presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier’s and Knuth–Bendix’s completions into a homotopical completion–reduction, applied to Artin’s and Garside’s presentations. The main result of the paper states that the so-called Tits–Zamolodchikov 3-cells extend Artin’s presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.

[1]  Philippe Malbos,et al.  Higher-dimensional normalisation strategies for acyclicity , 2010, 1011.0558.

[2]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[3]  Patrick Dehornoy,et al.  Foundations of Garside Theory , 2013, 1309.0796.

[4]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[5]  M. Geck PyCox: computing with (finite) Coxeter groups and Iwahori-Hecke algebras , 2012, LMS J. Comput. Math..

[6]  S. Lack,et al.  A Quillen model structure for Gray-categories , 2002, 1001.2366.

[7]  Representation theory of 2-groups on Kapranov and Voevodsky's 2-vector spaces , 2007 .

[8]  Patrick Dehornoy,et al.  Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .

[9]  Craig C. Squier,et al.  Word problems and a homological niteness condition for monoids , 1987 .

[10]  Yves Métivier About the Rewriting Systems Produced by the Knuth-Bendix Completion Algorithm , 1983, Inf. Process. Lett..

[11]  John C. Baez Higher-Dimensional Algebra II. 2-Hilbert Spaces☆ , 1996 .

[12]  Benita Elias,et al.  Soergel Calculus , 2013, 1309.0865.

[13]  S. Lane Categories for the Working Mathematician , 1971 .

[14]  Jacques Tits,et al.  A Local Approach to Buildings , 1981 .

[15]  Friedrich Otto,et al.  A Finiteness Condition for Rewriting Systems , 1994, Theor. Comput. Sci..

[16]  Philippe Malbos,et al.  Higher-dimensional categories with finite derivation type , 2008, 0810.1442.

[17]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[18]  Samuel Mimram,et al.  A Homotopical Completion Procedure with Applications to Coherence of Monoids , 2013, RTA.

[19]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[20]  Paliath Narendran,et al.  A Finite Thue System with Decidable Word Problem and without Equivalent Finite Canonical System , 1985, Theor. Comput. Sci..

[21]  Kenneth S. Brown,et al.  The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem , 1992 .

[22]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[23]  Patrick Dehornoy Groupes de Garside , 2001 .

[24]  Ross Street,et al.  Limits indexed by category-valued 2-functors , 1976 .

[25]  Yu. I. Manin,et al.  Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders , 1989 .

[26]  P. Deligne Action du groupe des tresses sur une catégorie , 1997 .

[27]  Juan González-Meneses,et al.  The cyclic sliding operation in Garside groups , 2008, 0808.1430.

[28]  John C. Baez,et al.  Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.

[29]  John C. Baez,et al.  Higher Dimensional Algebra: I. Braided Monoidal 2-Categories , 1995, q-alg/9511013.

[30]  R. Green CHARACTERS OF FINITE COXETER GROUPS AND IWAHORI–HECKE ALGEBRAS (London Mathematical Society Monographs: New Series 21) By MEINOLF GECK and GÖTZ PFEIFFER: 446 pp., £65.00 (LMS members' price £45.50), ISBN 0-19-850250-8 (Clarendon Press, Oxford, 2000). , 2001 .

[31]  Y. Lafont,et al.  Homology of gaussian groups , 2001, math/0111231.

[32]  Representation and character theory in 2-categories , 2006, math/0602510.

[34]  J. Michel A Note on Words in Braid Monoids , 1999 .

[35]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[36]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[37]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .

[38]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[39]  Meinolf Geck,et al.  Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , 2000 .

[40]  Mark Ronan,et al.  Lectures on Buildings , 1989 .

[41]  H. Tietze,et al.  Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten , 1908 .

[42]  W. Haboush,et al.  Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods , 1994 .