Complex organics in space from Solar System to distant galaxies

Recent observational and experimental evidence for the presence of complex organics in space is reviewed. Remote astronomical observations have detected $$\sim $$∼200 gas-phased molecules through their rotational and vibrational transitions. Many classes of organic molecules are represented in this list, including some precursors to biological molecules. A number of unidentified spectral phenomena observed in the interstellar medium are likely to have originated from complex organics. The observations of these features in distant galaxies suggests that organic synthesis had already taken place during the early epochs of the Universe. In the Solar System, almost all biologically relevant molecules can be found in the soluble component of carbonaceous meteorites. Complex organics of mixed aromatic and aliphatic structures are present in the insoluble component of meteorites. Hydrocarbons cover much of the surface of the planetary satellite Titan and complex organics are found in comets and interplanetary dust particles. The possibility that the early Solar System, or even the early Earth, have been enriched by interstellar organics is discussed.

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  E. Dartois,et al.  The 6.2 μm band position in laboratory and astrophysical spectra: a tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust , 2008 .

[3]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE HIFI 1.2 THz WIDE SPECTRAL SURVEY TOWARD ORION KL. I. METHODS , 2014, 1405.2351.

[4]  A. Webster The extended red emission and the fluorescence of C60 , 1993 .

[5]  R. Russell,et al.  The 4 to 8 micron spectrum of NGC 7027 , 1977 .

[6]  R. Dickman,et al.  Search for interstellar pyrrole and furan , 1980 .

[7]  D. Elbaz,et al.  PROBING THE INTERSTELLAR MEDIUM OF z ∼ 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY , 2013, 1306.1831.

[8]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[9]  Measuring PAH Emission in Ultradeep Spitzer* IRS ** Spectroscopy of High-Redshift IR-Luminous Galaxies , 2007, astro-ph/0701409.

[10]  J. Maier,et al.  Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands , 2015, Nature.

[11]  O. Shemmer,et al.  PAH Emission and Star Formation in the Host of the z ~ 2.56 Cloverleaf QSO , 2007, 0704.0133.

[12]  Sun Kwok,et al.  The synthesis of organic and inorganic compounds in evolved stars , 2004, Nature.

[13]  Y. Pendleton,et al.  The Effects of Ion Irradiation on the Evolution of the Carrier of the 3.4 Micron Interstellar Absorption Band , 2003 .

[14]  H James Cleaves,et al.  Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[16]  L. Colangeli,et al.  A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump , 1998 .

[17]  M. Pasek Implications of extraterrestrial material on the origin of life , 2015, Proceedings of the International Astronomical Union.

[18]  S. Kwok,et al.  High-Resolution Infrared Space Observatory Spectroscopy of the Unidentified 21 Micron Feature , 1999 .

[19]  T. Geballe,et al.  Three micron spectroscopy of IRAS sources - Observed and laboratory signatures of PAHs , 1990 .

[20]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[21]  K. Lehtinen,et al.  Unidentified infrared bands in the interstellar medium across the galaxy , 2003, astro-ph/0305171.

[22]  K. Gordon,et al.  Discovery of Blue Luminescence in the Red Rectangle: Possible Fluorescence from Neutral Polycyclic Aromatic Hydrocarbon Molecules? , 2004, astro-ph/0403522.

[23]  Jr.,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[24]  T. Henning,et al.  FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS , 2009, 0903.0775.

[25]  A. Witt,et al.  X marks the spot : distribution and excitation of unidentified molecules in the Red Rectangle , 1991 .

[26]  W. Duley,et al.  The Decomposition of Hydrogenated Amorphous Carbon: A Connection with Polycyclic Aromatic Hydrocarbon Molecules , 1996 .

[27]  J. B. Marquette,et al.  A frozen super-Earth orbiting a star at the bottom of the main sequence , 2010, 1009.5665.

[28]  W. Dow Kerogen studies and geological interpretations , 1977 .

[29]  Andrew Steele,et al.  Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust , 2006, Science.

[30]  C. McKay,et al.  Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects , 2015, International Journal of Astrobiology.

[31]  S. Derenne,et al.  Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .

[32]  B. Nagy,et al.  MASS SPECTROSCOPIC ANALYSIS OF THE ORGUEIL METEORITE: EVIDENCE FOR BIOGENIC HYDROCARBONS , 1961 .

[33]  J. M. Hollis,et al.  Interstellar Glycolaldehyde: The First Sugar , 2000 .

[34]  N. Kaifu,et al.  Detection of Interstellar Methylamine , 1974 .

[35]  R. Genzel,et al.  A Mid-Infrared Spectroscopic Study of Submillimeter Galaxies: Luminous Starbursts at High Redshift , 2007, astro-ph/0701816.

[36]  S. Kwok Physics And Chemistry of the Interstellar Medium , 2006 .

[37]  Everett Shock,et al.  The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. , 2010, Cold Spring Harbor perspectives in biology.

[38]  S. Kwok,et al.  Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features , 2011, Nature.

[39]  David A. Williams,et al.  The infrared spectrum of interstellar dust: Surface functional groups on carbon , 1981 .

[40]  T. Stecher,et al.  INTERSTELLAR EXTINCTION IN THE ULTRAVIOLET. II. , 1969 .

[41]  S. Bajt,et al.  An Astronomical 2175 Å Feature in Interplanetary Dust Particles , 2005, Science.

[42]  S. Kwok,et al.  Unusual 3 micron emission features in three proto-planetary nebulae , 1992 .

[43]  Joseph Veverka,et al.  The composition of the Trojan asteroids , 1980, Nature.

[44]  E. Anders,et al.  Pre-biotic organic matter from comets and asteroids , 1989, Nature.

[45]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[46]  V. Guillet,et al.  The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point , 2013, 1411.6293.

[47]  Saša Bajt,et al.  Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft , 2014, Science.

[48]  Paul A. Jones,et al.  A Search for biomolecules in Sagittarius B2 (LMH) with the Australia Telescope Compact Array , 2007 .

[49]  G. Walker,et al.  IDENTIFICATION OF MORE INTERSTELLAR C 60 + ?> BANDS , 2015, 1509.06818.

[50]  R. Papoular,et al.  A polycrystalline graphite model for the 2175 Å interstellar extinction band , 2009, 0902.2637.

[51]  G. Cody,et al.  Establishing a molecular relationship between chondritic and cometary organic solids , 2011, Proceedings of the National Academy of Sciences.

[52]  Y. Pendleton,et al.  Hydrocarbon dust absorption in Seyfert galaxies and ULIRGs , 2004, Proceedings of the International Astronomical Union.

[53]  A search for interstellar pyrimidine , 2003, astro-ph/0308116.

[54]  M. Abe,et al.  ToF-SIMS analysis of carbonaceous particles in the sample catcher of the Hayabusa spacecraft , 2015, Earth, Planets and Space.

[55]  P. Bernath,et al.  On the Origin of Infrared Plateau Features in Proto-Planetary Nebulae , 2001 .

[56]  J. M. Hollis,et al.  Green Bank Telescope Detection of New Interstellar Aldehydes: Propenal and Propanal , 2004 .

[57]  Olivier Berné,et al.  Formation of buckminsterfullerene (C60) in interstellar space , 2011, Proceedings of the National Academy of Sciences.

[58]  Jan Cami,et al.  Detection of C60 and C70 in a Young Planetary Nebula , 2010, Science.

[59]  Diffuse Interstellar Bands in NGC 1448 , 2004, astro-ph/0409340.

[60]  Andrew Scott Rivkin,et al.  Asteroid 65 Cybele: Detection Of Small Silicate Grains, Water-Ice And Organics , 2010 .

[61]  Cecilia Ceccarelli,et al.  Our astrochemical heritage , 2012, 1210.6368.

[62]  A. Speck,et al.  Processing of Presolar Grains around Post-Asymptotic Giant Branch Stars: Silicon Carbide as the Carrier of the 21 Micron Feature , 2004 .

[63]  E. A. Alekseev,et al.  A Rigorous Attempt to Verify Interstellar Glycine , 2004, astro-ph/0410335.

[64]  S. Kwok,et al.  UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs? , 2013, 1304.7629.

[65]  Detection of Interstellar Methylamine by its 2_{02}->1_{10} A_{a^{-}} State Transition , 1974 .

[66]  P. Cox,et al.  The C-C-C bending modes of PAHs : a new emission plateau from 15 to 20 mu m , 2000 .

[67]  B. Drouin,et al.  THE SUBMILLIMETER SPECTRUM OF GLYCOLALDEHYDE , 2010 .

[68]  J. F. Mccarthy,et al.  A far-infrared emission feature in carbon-rich stars and planetary nebulae , 1981 .

[69]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[70]  D. A. García-Hernández,et al.  A search for diffuse bands in fullerene planetary nebulae: evidence of diffuse circumstellar bands , 2014, 1411.7669.

[71]  C. Ceccarelli,et al.  Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157 , 2014, 1408.4857.

[72]  J. Kister,et al.  A coal model for the carriers of the unidentified IR bands , 1989 .

[73]  T. Boroson,et al.  Spectroscopy of extended red emission in reflection nebulae , 1990 .

[74]  E. Dartois,et al.  IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs , 2007 .

[75]  T. Onaka,et al.  Infrared Spectrum of Quenched Carbonaceous Composite (QCC). II. A New Identification of the 7.7 and 8.6 Micron Unidentified Infrared Emission Bands , 1987 .

[76]  H. Imanaka,et al.  Tholins as coloring agents on outer Solar System bodies , 2005 .

[77]  F. Hoyle,et al.  Polysaccharides and infrared spectra of galactic sources , 1977, Nature.

[78]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[79]  A. Webster The lowest of the strongly infrared-active vibrations of the fulleranes and astronomical emission band at a wavelength of 21 µm , 1995 .

[80]  J. Rouzaud,et al.  Nanoparticles produced by Laser Pyrolysis of hydrocarbons: analogy with carbon cosmic dust , 1998 .

[81]  J. Brucato,et al.  Activation of the 3.4 Micron Band in Carbon Grains by Exposure to Atomic Hydrogen , 1999 .

[82]  B. Foing,et al.  Detection of Diffuse Interstellar Bands in the Magellanic Clouds , 2002 .

[83]  S. Sandford,et al.  Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2 , 2010 .

[84]  S. Bajt,et al.  THE ORIGIN OF THE 3.4 μm FEATURE IN WILD 2 COMETARY PARTICLES AND IN ULTRACARBONACEOUS INTERPLANETARY DUST PARTICLES , 2013, 1301.7470.

[85]  T. Henning,et al.  Abundances of PAHs in the ISM: confronting observations with experimental results , 2011, 1102.3775.

[86]  K. Menten,et al.  Erratum: Detection of amino acetonitrile in Sgr B2(N) , 2008, 0801.3219.

[87]  G. Flynn,et al.  The origin of organic matter in the solar system: Evidence from the interplanetary dust particles , 2003 .

[88]  S. Kwok,et al.  DETECTION OF C60 IN THE PROTOPLANETARY NEBULA IRAS 01005+7910 , 2011, 1102.2985.

[89]  R. Schild,et al.  Hydrogenated Amorphous Carbon Grains in Reflection Nebulae , 1986 .

[90]  E. Dartois Observations of Interstellar Carbon Compounds , 2020, PAHs and the Universe.

[91]  D. Allen,et al.  The 3.4-µm interstellar absorption feature , 1980, Nature.

[92]  The ERE of the Red Rectangle revisited , 2002, astro-ph/0204447.

[93]  T. P. Stecher Interstellar Ectinction in the Ultraviolet. , 1965 .

[94]  L. Bernstein,et al.  SMALL CARBONACEOUS MOLECULES, ETHYLENE OXIDE (c-C2H4O) AND CYCLOPROPENYLIDENE (c-C3H2): SOURCES OF THE UNIDENTIFIED INFRARED BANDS? , 2009 .

[95]  D. A. García-Hernández,et al.  INFRARED STUDY OF FULLERENE PLANETARY NEBULAE , 2012, 1210.0216.

[96]  T. Onaka,et al.  Quenched Carbonaceous Composite: Fluorescence Spectrum Compared to the Extended Red Emission Observed in Reflection Nebulae , 1992 .

[97]  R. Maiolino,et al.  Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy , 2005, astro-ph/0510282.

[98]  R. Puetter,et al.  Spectrophotometry of compact H II regions from 4 to 8 microns , 1979 .

[99]  W. Duley,et al.  Spectra of Carbon Nanoparticles: Laboratory Simulation of the Aromatic CH Emission Feature at 3.29 μm , 2008 .

[100]  A. Jones Variations on a theme – the evolution of hydrocarbon solids (Corrigendum) - III. Size-dependent properties – the optEC(s)(a) model , 2012 .

[101]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE FULL HERSCHEL/HIFI MOLECULAR LINE SURVEY OF SAGITTARIUS B2(N) , 2014, 1405.0706.

[102]  J. Robertson Diamond-like amorphous carbon , 2002 .

[103]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[104]  S. Kwok,et al.  On the detections of C60 and derivatives in circumstellar environments , 2013, Earth, Planets and Space.

[105]  N. Woolf Circumstellar infrared emission from cool stars. , 1969 .

[106]  C. Reynaud,et al.  Coal Models for the Infrared Emission Spectra of Proto--Planetary Nebulae , 1996 .

[107]  S. Sandford,et al.  ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N2:CH4:CO-CONTAINING ICES , 2014 .

[108]  S. Kwok,et al.  A SPITZER/INFRARED SPECTROGRAPH SPECTRAL STUDY OF A SAMPLE OF GALACTIC CARBON-RICH PROTO-PLANETARY NEBULAE , 2010, 1010.1327.

[109]  A. Jones,et al.  Variations on a theme – the evolution of hydrocarbon solids - II. Optical property modelling – the optEC(s) model , 2012, 1511.01682.

[110]  J. Jørgensen,et al.  DETECTION OF THE SIMPLEST SUGAR, GLYCOLALDEHYDE, IN A SOLAR-TYPE PROTOSTAR WITH ALMA , 2012, 1208.5498.

[111]  E. Peeters,et al.  ON THE EXCITATION AND FORMATION OF CIRCUMSTELLAR FULLERENES , 2012, 1207.5794.

[112]  C. Snape,et al.  Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite , 2004 .

[113]  J. M. Hollis,et al.  OBSERVATIONAL RESULTS OF A MULTI-TELESCOPE CAMPAIGN IN SEARCH OF INTERSTELLAR UREA [(NH2)2CO] , 2014, 1401.4483.

[114]  J. Puget,et al.  Identification of the 'unidentified' IR emission features of interstellar dust? , 1984 .

[115]  Aigen Li,et al.  ON MAGNESIUM SULFIDE AS THE CARRIER OF THE 30 μm EMISSION FEATURE IN EVOLVED STARS , 2009, 0907.1037.

[116]  K. Yanagisawa,et al.  THE DETECTION OF C60 IN THE WELL-CHARACTERIZED PLANETARY NEBULA M1-11 , 2013, 1301.7104.

[117]  L. D'hendecourt,et al.  Are polycyclic aromatic hydrocarbons the carriers of the diffuse interstellar bands in the visible , 1985 .

[118]  Anthony J. Remijan,et al.  Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond , 2006 .

[119]  R. Courtin,et al.  The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process , 2012 .

[120]  E. Dartois,et al.  UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line , 2013 .

[121]  R. Kirk,et al.  Titan's inventory of organic surface materials , 2008 .

[122]  C. Reynaud,et al.  Silicon as a candidate carrier for ERE , 1998 .

[123]  L. Ziurys,et al.  FORMATION OF PEPTIDE BONDS IN SPACE: A COMPREHENSIVE STUDY OF FORMAMIDE AND ACETAMIDE IN Sgr B2(N) , 2011 .

[124]  R. Papoular,et al.  The use of kerogen data in understanding the properties and evolution of interstellar carbonaceous dust , 2001 .

[125]  W. Irvine,et al.  Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[126]  D. A. García-Hernández,et al.  Diffuse interstellar bands in fullerene planetary nebulae: the fullerenes - diffuse interstellar bands connection , 2013, 1301.0242.

[127]  R. Gruendl,et al.  DISCOVERY AND ANALYSIS OF 21 μm FEATURE SOURCES IN THE MAGELLANIC CLOUDS , 2011 .

[128]  S. Kwok,et al.  On the viability of the PAH model as an explanation of the unidentified infrared emission features , 2014, 1410.6573.

[129]  A. Jones,et al.  The role of laboratory experiments in the characterisation of silicon–based cosmic material , 2003 .

[130]  G. Wright,et al.  Hydrocarbon Dust Absorption in Seyfert Galaxies and Ultraluminous Infrared Galaxies , 2004 .

[131]  F. Cataldo,et al.  On the action of UV photons on hydrogenated fulleranes C60H36 and C60D36 , 2009 .

[132]  F. Cataldo,et al.  A new model for the interpretation of the unidentified infrared bands (UIBS) of the diffuse interstellar medium and of the protoplanetary nebulae , 2002, International Journal of Astrobiology.

[133]  N. Cox,et al.  Astronomical searches for nitrogen heterocycles , 2005 .

[134]  S. Sadjadi,et al.  ON THE ORIGIN OF THE 11.3 MICRON UNIDENTIFIED INFRARED EMISSION FEATURE , 2015, 1505.03971.

[135]  S. Kwok,et al.  2-45 Micron Infrared Spectroscopy of Carbon-rich Proto-Planetary Nebulae , 2000 .

[136]  B. Foing,et al.  Detection of two interstellar absorption bands coincident with spectral features of C60+ , 1994, Nature.

[137]  Carl Sagan,et al.  Tholins: organic chemistry of interstellar grains and gas , 1978, Nature.

[138]  R. Kaiser,et al.  ON THE FORMATION OF AMINES (RNH2) AND THE CYANIDE ANION (CN−) IN ELECTRON-IRRADIATED AMMONIA–HYDROCARBON INTERSTELLAR MODEL ICES , 2011 .

[139]  B. Sicardy,et al.  Retrieval and tentative indentification of the 3 μm spectral feature in Titan's haze , 2011 .

[140]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[141]  F. Cataldo From Elemental Carbon to Complex Macromolecular Networks in Space , 2004 .

[142]  A. Bubenzer,et al.  Bonding in hydrogenated hard carbon studied by optical spectroscopy , 1983 .

[143]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[144]  Susana Iglesias-Groth,et al.  Fullerenes and Buckyonions in the Interstellar Medium , 2004 .

[145]  E. Dartois,et al.  Diffuse interstellar medium organic polymers: Photoproduction of the 3.4, 6.85 and 7.25 μm features , 2004 .

[146]  J. P. U. Fynbo,et al.  DUST EXTINCTION IN HIGH-z GALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 Å FEATURE AT z = 2.45 , 2008, 0810.2897.

[147]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[148]  Alexander G. G. M. Tielens,et al.  Near-infrared absorption spectroscopy of interstellar hydrocarbon grains , 1994 .

[149]  S. Kwok,et al.  A 21 micron emission feature in four proto-planetary nebulae , 1989 .

[150]  T. Snow Diffuse Interstellar Bands: Past and Present , 2013, Proceedings of the International Astronomical Union.

[151]  R. Knacke Carbonaceous compounds in interstellar dust , 1977, Nature.

[152]  J. Blank,et al.  Astrophysical and astrochemical insights into the origin of life , 2002 .

[153]  N. Kaifu,et al.  Microwave detection of interstellar cyanamide , 1971 .

[154]  A. Jones,et al.  Variations on a theme - the evolution of hydrocarbon solids: , 2012, 1511.01673.

[155]  J. Kerridge Formation and processing of organics in the early solar system. , 1999, Space science reviews.

[156]  T. Nakagawa,et al.  AKARI IRC INFRARED 2.5–5 μm SPECTROSCOPY OF A LARGE SAMPLE OF LUMINOUS INFRARED GALAXIES , 2010, 1008.1585.

[157]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[158]  R. Papoular Candidate carriers and synthetic spectra of the 21- and 30-μm proto-planetary nebular bands , 2011, 1104.4440.

[159]  A. Mckellar,et al.  EVIDENCE FOR THE MOLECULAR ORIGIN OF SOME HITHERTO UNIDENTIFIED INTERSTELLAR LINES , 1940 .

[160]  J. Elsila,et al.  Assessing the origins of aliphatic amines in the Murchison meteorite from their compound-specific carbon isotopic ratios and enantiomeric composition , 2014 .

[161]  S. Kwok,et al.  Nanodiamond as a Possible Carrier of Extended Red Emission , 2005 .