Nonthermal plasma synthesis of semiconductor nanocrystals

Semiconductor nanocrystals have attracted considerable interest for a wide range of applications including light-emitting devices and displays, photovoltaic cells, nanoelectronic circuit elements, thermoelectric energy generation and luminescent markers in biomedicine. A particular advantage of semiconductor nanocrystals compared with bulk materials rests in their size-tunable optical, mechanical and thermal properties. While nanocrystals of ionically bonded semiconductors can conveniently be synthesized with liquid phase chemistry, covalently bonded semiconductors require higher synthesis temperatures. Over the past decade, nonthermal plasmas have emerged as capable synthetic approaches for the covalently bonded semiconductor nanocrystals. Among the main advantages of nanocrystal synthesis in plasmas is the unipolar electrical charging of nanocrystals that helps avoid or reduce particle agglomeration and the selective heating of nanoparticles immersed in low-pressure plasmas. This paper discusses the important fundamental mechanisms of nanocrystal formation in plasmas, reviews the range of synthesis approaches reported in the literature and discusses some of the potential applications of plasma-synthesized semiconductor nanocrystals.

[1]  U. Kortshagen,et al.  Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. H. Thomas,et al.  SF6 plasma etching of silicon nanocrystals , 2009, Nanotechnology.

[3]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[4]  U. Kortshagen,et al.  Analytical model of particle charging in plasmas over a wide range of collisionality. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  M. Stutzmann,et al.  Electronic properties of doped silicon nanocrystal films , 2008 .

[6]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[7]  C. B. Carter,et al.  Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach , 2008, Nanotechnology.

[8]  S. Campbell,et al.  Doping efficiency, dopant location, and oxidation of Si nanocrystals , 2008 .

[9]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[10]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[11]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[12]  M. Stutzmann,et al.  Electronic transport in phosphorus-doped silicon nanocrystal networks. , 2008, Physical review letters.

[13]  S. Campbell,et al.  Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications , 2008 .

[14]  M. Stutzmann,et al.  Electronic transport through Si nanocrystal films: Spin-dependent conductivity studies , 2007 .

[15]  M. Stutzmann,et al.  Thermoelectric effect in laser annealed printed nanocrystalline silicon layers , 2007 .

[16]  J. L. Zhao,et al.  Improved Performance from Multilayer Quantum Dot Light‐Emitting Diodes via Thermal Annealing of the Quantum Dot Layer , 2007 .

[17]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[18]  U. Kortshagen,et al.  Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals , 2007 .

[19]  S. Campbell,et al.  In-flight dry etching of plasma-synthesized silicon nanocrystals , 2007 .

[20]  M. Bawendi,et al.  Carrier multiplication yields in CdSe and CdTe nanocrystals by transient photoluminescence , 2007, 0708.3866.

[21]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[22]  S. Campbell,et al.  Nonthermal Plasma Synthesis of Faceted Germanium Nanocrystals , 2007 .

[23]  F. Priolo,et al.  Formation, evolution and photoluminescence properties of Si nanoclusters , 2007 .

[24]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[25]  Edward H. Sargent,et al.  Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution , 2007 .

[26]  Uwe R. Kortshagen,et al.  A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices , 2007 .

[27]  Gilles Patriarche,et al.  Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices , 2007 .

[28]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[29]  S. Campbell,et al.  Electroluminescence from surface oxidized silicon nanoparticles dispersed within a polymer matrix , 2007 .

[30]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[31]  C. Schulz,et al.  Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes , 2007 .

[32]  U. Kortshagen,et al.  High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation , 2006 .

[33]  Uwe R. Kortshagen,et al.  Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals , 2006 .

[34]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[35]  Yukio Watanabe,et al.  Formation and behaviour of nano/micro-particles in low pressure plasmas , 2006 .

[36]  A. Kar,et al.  Thin film deposition on plastic substrates using silicon nanoparticles and laser nanoforming , 2006 .

[37]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[38]  A. Kar,et al.  Laser forming of silicon films using nanoparticle precursor , 2006 .

[39]  M. Fujii,et al.  Photoluminescence from Si Nanocrystals Embedded in In Doped SiO2 , 2006 .

[40]  T. Seto,et al.  Size-dependent crystallization of Si nanoparticles , 2006 .

[41]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[42]  Richard K. Baldwin,et al.  The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles. , 2006, Chemical communications.

[43]  M. Fujii,et al.  Photoluminescence from impurity codoped and compensated Si nanocrystals , 2005 .

[44]  Yongping Ding,et al.  Single nanoparticle semiconductor devices , 2005, IEEE Transactions on Electron Devices.

[45]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[46]  G. Morfill,et al.  Particle charge in the bulk of gas discharges. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[48]  V. Bulović,et al.  Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting , 2005 .

[49]  Mark T Swihart,et al.  Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[50]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[51]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[52]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[53]  R. M. Sankaran,et al.  Synthesis of blue luminescent si nanoparticles using atmospheric-pressure microdischarges. , 2005, Nano letters.

[54]  P. Roth,et al.  Formation of Si-nanoparticles in a microwave reactor: Comparison between experiments and modelling , 2005 .

[55]  P. Roth,et al.  Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. , 2004, Journal of nanoscience and nanotechnology.

[56]  S. Campbell,et al.  Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications , 2004, physics/0410038.

[57]  A. Barnard,et al.  A model for the phase stability of arbitrary nanoparticles as a function of size and shape. , 2004, The Journal of chemical physics.

[58]  R. Quinn,et al.  Experimental determination of dust-particle charge in a discharge plasma at elevated pressures. , 2004, Physical review letters.

[59]  M. Fujii,et al.  Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities , 2004 .

[60]  M. Swihart,et al.  Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[61]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[62]  Mark T. Swihart,et al.  Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum , 2003 .

[63]  S. Campbell,et al.  Formation of highly uniform silicon nanoparticles in high density silane plasmas , 2003 .

[64]  C. B. Carter,et al.  Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma , 2003 .

[65]  C. B. Carter,et al.  Superhard silicon nanospheres , 2003 .

[66]  U. Kortshagen,et al.  Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon?silane low-pressure plasmas , 2003 .

[67]  Valeriy V. Gavrishchaka,et al.  Trapped ion effect on shielding, current flow, and charging of a small object in a plasma , 2003 .

[68]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[69]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[70]  M. Fujii,et al.  Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals. , 2002, Physical review letters.

[71]  Enric Bertran,et al.  Atomic structure of the nanocrystalline Si particles appearing in nanostructured Si thin films produced in low-temperature radiofrequency plasmas , 2002 .

[72]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[73]  Xinwei Zhao,et al.  Nanocrystalline silicon electron emitter with a high efficiency enhanced by a planarization technique , 2002 .

[74]  Eray S. Aydil,et al.  Mechanism of hydrogen-induced crystallization of amorphous silicon , 2002, Nature.

[75]  Shaoyun Huang,et al.  Evidence of storing and erasing of electrons in a nanocrystalline-Si based memory device at 77 K , 2002 .

[76]  A. Howling,et al.  Anion reactions in silane plasma , 2002 .

[77]  A. Nozik Quantum dot solar cells , 2002 .

[78]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[79]  B. Hinds,et al.  Emission lifetime of polarizable charge stored in nano-crystalline Si based single-electron memory , 2001 .

[80]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[81]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[82]  Harry A. Atwater,et al.  Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices , 2001 .

[83]  Q. Jiang,et al.  LETTER TO THE EDITOR: Melting temperatures of semiconductor nanocrystals in the mesoscopic size range , 2001 .

[84]  G. Ganguli,et al.  Effect of trapped ions on shielding of a charged spherical object in a plasma. , 2001, Physical review letters.

[85]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[86]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[87]  M. Fujii,et al.  Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals , 2000 .

[88]  U. Kortshagen,et al.  Modelling of silicon hydride clustering in a low-pressure silane plasma , 2000 .

[89]  K. Sabelfeld,et al.  Aggregate Formation Under Homogeneous Silane Thermal Decomposition , 2000 .

[90]  K. Nishiguchi,et al.  Electron transport in a single silicon quantum structure using a vertical silicon probe , 2000 .

[91]  M. Willander,et al.  Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias , 2000 .

[92]  V. A. Sinel’shchikov,et al.  On the charge of dust particles in a low-pressure gas discharge plasma , 2000 .

[93]  Gallagher Model of particle growth in silane discharges , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[94]  K. Sabelfeld,et al.  AEROSOL FORMATION UNDER HETEROGENEOUS/HOMOGENEOUS THERMAL DECOMPOSITION OF SILANE: EXPERIMENT AND NUMERICAL MODELING , 2000 .

[95]  G. Kroesen,et al.  Microcalorimetry of dust particles in a radio-frequency plasma , 2000 .

[96]  M. Swihart Electron affinities of selected hydrogenated silicon clusters (SixHy, x=1-7, y=0-15) from density functional theory calculations , 2000 .

[97]  J. Allen,et al.  On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma , 2000 .

[98]  O. Marty,et al.  Structural, optical and electronic properties of hydrogenated polymorphous silicon films deposited at 150°C , 2000 .

[99]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[100]  U. Kortshagen,et al.  Generation and growth of nanoparticles in low-pressure plasmas , 1999 .

[101]  F. Koch,et al.  Optical Properties of Si Nanocrystals , 1999 .

[102]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[103]  M. Fujii,et al.  Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency , 1999 .

[104]  Jean-Paul Kleider,et al.  Some electronic and metastability properties of a new nanostructured material: Hydrogenated polymorphous silicon , 1999 .

[105]  U. Kortshagen,et al.  Modeling of particulate coagulation in low pressure plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Jean-Paul Kleider,et al.  Midgap density of states in hydrogenated polymorphous silicon , 1999 .

[107]  M. Fujii,et al.  Quenching of photoluminescence from Si nanocrystals caused by boron doping , 1999 .

[108]  F. Huisken,et al.  Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane , 1999 .

[109]  Karuna Kar Nanda,et al.  Size-dependent melting of small particles: a classical approach , 1998 .

[110]  M. Fujii,et al.  Photoluminescence from B-doped Si nanocrystals , 1998 .

[111]  Jean-Paul Kleider,et al.  Properties of a new a-Si:H-like material: hydrogenated polymorphous silicon , 1998 .

[112]  S. Oda Preparation of nanocrystalline silicon quantum dot structure by a digital plasma process , 1997 .

[113]  M. Hori,et al.  Roles of SiH3 and SiH2 Radicals in Particle Growth in rf Silane Plasmas , 1997 .

[114]  A. Itoh,et al.  Fabrication of Nanocrystalline Silicon with Small Spread of Particle Size by Pulsed Gas Plasma , 1997 .

[115]  C. Gorla,et al.  Silicon and germanium nanoparticle formation in an inductively coupled plasma reactor , 1997 .

[116]  T. Matsoukas,et al.  The Coagulation Rate of Charged Aerosols in Ionized Gases , 1997, Journal of colloid and interface science.

[117]  U. Frenzel,et al.  Radiative cooling of free metal clusters , 1997 .

[118]  Uwe R. Kortshagen,et al.  On the E - H mode transition in RF inductive discharges , 1996 .

[119]  S. Oda,et al.  Nanocrystalline silicon formation in a SiH4 plasma cell , 1996 .

[120]  H. Ohkura,et al.  Contribution of short lifetime radicals to the growth of particles in SiH4 high frequency discharges and the effects of particles on deposited films , 1996 .

[121]  I. Schweigert,et al.  Coagulation in a low-temperature plasma , 1996 .

[122]  T. Matsoukas,et al.  Stochastic charge fluctuations in dusty plasmas , 1996 .

[123]  P. Cabarrocas,et al.  Experimental evidence for nanoparticle deposition in continuous argon–silane plasmas: Effects of silicon nanoparticles on film properties , 1996 .

[124]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[125]  A. Fridman,et al.  Dusty plasma formation: Physics and critical phenomena. Theoretical approach , 1996 .

[126]  A. Howling,et al.  From molecules to particles in silane plasmas , 1996 .

[127]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[128]  T. Matsoukas,et al.  Particle charging in low‐pressure plasmas , 1995 .

[129]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[130]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[131]  S. Gates,et al.  ATOMIC H ABSTRACTION OF SURFACE H ON SI : AN ELEY-RIDEAL MECHANISM ? , 1994 .

[132]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[133]  J. Dutta,et al.  Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering , 1994 .

[134]  J. Goree Charging of particles in a plasma , 1994 .

[135]  J. Perrin,et al.  Possible routes for cluster growth and particle formation in RF silane discharges , 1994 .

[136]  André Bouchoule,et al.  Particle nucleation and growth in a low-pressure argon-silane discharge , 1994 .

[137]  Frank G. Shi,et al.  Size dependent thermal vibrations and melting in nanocrystals , 1994 .

[138]  A. Howling,et al.  TIME-RESOLVED MEASUREMENTS OF HIGHLY POLYMERIZED NEGATIVE IONS IN RADIO FREQUENCY SILANE PLASMA DEPOSITION EXPERIMENTS , 1994 .

[139]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[140]  Heath,et al.  Electron energy loss spectroscopy of single silicon nanocrystals: The conduction band. , 1993, Physical review letters.

[141]  A. Bouchoule,et al.  Particulate formation and dusty plasma behaviour in argon-silane RF discharge , 1993 .

[142]  D. Graves,et al.  Particulate temperature in radio frequency glow discharges , 1993 .

[143]  G. Selwyn,et al.  Trapping and behavior of particulates in a radio frequency magnetron plasma etching tool , 1993 .

[144]  A. Howling,et al.  Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments , 1993 .

[145]  A. Howling,et al.  Negative-Ion Mass-Spectra and Particulate Formation in Radio-Frequency Silane Plasma Deposition Experiments , 1993 .

[146]  Louis E. Brus,et al.  A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction , 1993 .

[147]  Goree Ion trapping by a charged dust grain in a plasma. , 1992, Physical review letters.

[148]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[149]  L. Brus,et al.  Quantum crystallites and nonlinear optics , 1991 .

[150]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[151]  John F. O’Hanlon,et al.  Electrostatic trapping of contamination particles in a process plasma environment , 1991 .

[152]  Cronin B. Vining,et al.  Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys , 1991 .

[153]  Gary S. Selwyn,et al.  Particle trapping phenomena in radio frequency plasmas , 1990 .

[154]  W. H. Weinberg,et al.  Hydrogen desorption from the monohydride phase on Si(100) , 1990 .

[155]  Gary S. Selwyn,et al.  In situ laser diagnostic studies of plasma‐generated particulate contamination , 1989 .

[156]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[157]  I. Bernstein,et al.  Theory of Electrostatic Probes in a Low‐Density Plasma , 1959 .

[158]  U. Kortshagen,et al.  Hybrid solar cells from P3HT and silicon nanocrystals. , 2009, Nano letters.

[159]  S. Campbell,et al.  Fast High-Density Low-Pressure Plasma Synthesis of GaN Nanocrystals , 2005 .

[160]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[161]  F. Cichos,et al.  Nanostructuration with visible-light-emitting silicon nanocrystals , 2003 .

[162]  S. Kabana,et al.  Antihelium-3 production in lead-lead collisions at 158 A GeV/c , 2003 .

[163]  Peter H. Stauffer,et al.  Rare earth elements: critical resources for high technology , 2002 .

[164]  W. Stoffels,et al.  Surface processes of dust particles in low pressure plasmas , 2001 .

[165]  Z Zhang,et al.  Melting temperatures of semiconductor nanocrystals in the mesoscopic size range , 2001 .

[166]  Shunri Oda Shunri Oda,et al.  Fabrication of Nanocrystalline Silicon with Small Spread of Particle Size by Pulsed Gas Plasma , 1997 .

[167]  L Boufendi,et al.  Particulate formation and dusty plasma behaviour in argon-silane RF discharge , 1993 .

[168]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[169]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .