Corner Based Many-Objective Optimization

The performance of multi-objective evolutionary algorithms (MOEA) is severely deteriorated when applied to many-objective problems. For Pareto dominance based techniques, available information about optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms (NSGA-II, SMPSO and GDE3) when corner solutions are inserted into the population at different evolutionary stages. Corner solutions are found using specific algorithms. Preliminary results are presented concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5).

[1]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[2]  Carlos A. Coello Coello,et al.  Objective reduction using a feature selection technique , 2008, GECCO '08.

[3]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[4]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Jonathan E. Fieldsend,et al.  Visualisation and ordering of many-objective populations , 2010, IEEE Congress on Evolutionary Computation.

[6]  Khaled Ghédira,et al.  Estimating nadir point in multi-objective optimization using mobile reference points , 2010, IEEE Congress on Evolutionary Computation.

[7]  Eckart Zitzler,et al.  Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications , 2009, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[9]  Patrick M. Reed,et al.  Diagnostic assessment of the borg MOEA for many-objective product family design problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[10]  Carlos A. Coello Coello,et al.  Effective ranking + speciation = Many-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[11]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[12]  Dipankar Dasgupta,et al.  On the use of informed initialization and extreme solutions sub-population in multi-objective evolutionary algorithms , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[13]  Hisao Ishibuchi,et al.  Behavior of Evolutionary Many-Objective Optimization , 2008, Tenth International Conference on Computer Modeling and Simulation (uksim 2008).

[14]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[15]  Kalyanmoy Deb,et al.  Using objective reduction and interactive procedure to handle many-objective optimization problems , 2013, Appl. Soft Comput..

[16]  Khaled Ghédira,et al.  Searching for knee regions in multi-objective optimization using mobile reference points , 2010, SAC '10.

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[19]  Akira Oyama,et al.  An Alternative Preference Relation to Deal with Many-Objective Optimization Problems , 2013, EMO.

[20]  A. L. Gutierrez,et al.  Comparison of different PSO initialization techniques for high dimensional search space problems: A test with FSS and antenna arrays , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[21]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[22]  Peter J. Fleming,et al.  Diversity Management in Evolutionary Many-Objective Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[23]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[24]  Qingfu Zhang,et al.  Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms , 2013, IEEE Transactions on Evolutionary Computation.

[25]  Kalyanmoy Deb,et al.  Nadir Point Estimation Using Evolutionary Approaches: Better Accuracy and Computational Speed Through Focused Search , 2010, MCDM.

[26]  Jyrki Wallenius,et al.  Bibliometric Analysis of Multiple Criteria Decision Making/Multiattribute Utility Theory , 2008, MCDM.

[27]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[28]  Kalyanmoy Deb,et al.  Dimensionality reduction of objectives and constraints in multi-objective optimization problems: A system design perspective , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[29]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[30]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[31]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[32]  Kalyanmoy Deb,et al.  Handling many-objective problems using an improved NSGA-II procedure , 2012, 2012 IEEE Congress on Evolutionary Computation.

[33]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization , 2008, 2008 3rd International Workshop on Genetic and Evolving Systems.

[34]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .