Geostrophic balance preserving interpolation in mesh adaptive linearised shallow-water ocean modelling

Abstract The accurate representation of geostrophic balance is an essential requirement for numerical modelling of geophysical flows. Significant effort is often put into the selection of accurate or optimal balance representation by the discretisation of the fundamental equations. The issue of accurate balance representation is particularly challenging when applying dynamic mesh adaptivity, where there is potential for additional imbalance injection when interpolating to new, optimised meshes. In the context of shallow-water modelling, we present a new method for preservation of geostrophic balance when applying dynamic mesh adaptivity. This approach is based upon interpolation of the Helmholtz decomposition of the Coriolis acceleration. We apply this in combination with a discretisation for which states in geostrophic balance are exactly steady solutions of the linearised equations on an f-plane; this method guarantees that a balanced and steady flow on a donor mesh remains balanced and steady after interpolation onto an arbitrary target mesh, to within machine precision. We further demonstrate the utility of this interpolant for states close to geostrophic balance, and show that it prevents pollution of the resulting solutions by imbalanced perturbations introduced by the interpolation.

[1]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[2]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[3]  John M. Dennis,et al.  A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .

[4]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[5]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[6]  M. Piggott,et al.  Idealised flow past an island in a dynamically adaptive finite element model , 2010 .

[7]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[8]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[9]  Jean-François Remacle,et al.  High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations , 2009, J. Comput. Phys..

[10]  Andrew Staniforth,et al.  Finite Elements for Shallow-Water Equation Ocean Models , 1998 .

[11]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[12]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..

[13]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[14]  David A. Ham,et al.  A scalable unstructured grid 3-dimensional finite volume model for the shallow water equations , 2005 .

[15]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[16]  M. Piggott,et al.  A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows , 2009 .

[17]  Daniel Y. Le Roux,et al.  Analysis of Numerically Induced Oscillations in 2D Finite-Element Shallow-Water Models Part I: Inertia-Gravity Waves , 2007, SIAM J. Sci. Comput..

[18]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[19]  Hermann Weyl,et al.  The method of orthogonal projection in potential theory , 1940 .

[20]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[21]  M. McIntyre,et al.  Potential Vorticity Inversion on a Hemisphere , 2000 .

[22]  Yu. V. Vasilevskii,et al.  An adaptive algorithm for quasioptimal mesh generation , 1999 .

[23]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[24]  Hans Petter Langtangen,et al.  Modern Software Tools for Scientific Computing , 1997, Birkhäuser Boston.

[25]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[26]  Eric Deleersnijder,et al.  A finite element method for solving the shallow water equations on the sphere , 2009 .

[27]  David G. Dritschel,et al.  Hierarchies of Balance Conditions for the f -Plane Shallow-Water Equations , 2001 .

[28]  Christopher C. Pain,et al.  Unstructured adaptive meshes for ocean modeling , 2013 .

[29]  Patrick E. Farrell,et al.  Galerkin projection of discrete fields via supermesh construction , 2009 .

[30]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[31]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[32]  J. Riley,et al.  On the velocity field associated with potential vorticity , 1989 .

[33]  M. Piggott,et al.  A Nonhydrostatic Finite-Element Model for Three-Dimensional Stratified Oceanic Flows. Part II: Model Validation , 2004 .

[34]  David A. Ham,et al.  The symmetry and stability of unstructured mesh C-grid shallow water models under the influence of Coriolis , 2007 .

[35]  J. Kaurola,et al.  Decomposing the Atmospheric Flow Using Potential Vorticity Framework , 1991 .

[36]  Jeffrey Grandy,et al.  Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[37]  Graham F. Carey,et al.  Kernel Analysis of the Discretized Finite Difference and Finite Element Shallow-Water Models , 2008, SIAM J. Sci. Comput..

[38]  Yuri V. Vassilevski,et al.  Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .

[39]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[40]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[41]  Colin J. Cotter,et al.  Numerical wave propagation for the triangular P1DG-P2 finite element pair , 2010, J. Comput. Phys..