Electrically driven amplified spontaneous emission from colloidal quantum dots

[1]  V. Klimov,et al.  Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device (Adv. Mater. 9/2023) , 2022, Advances in Materials.

[2]  Jaehoon Lim,et al.  Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2 , 2022, Nature Communications.

[3]  Whi Dong Kim,et al.  High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization , 2022, Nature Photonics.

[4]  V. Klimov,et al.  Optically Excited Two-Band Amplified Spontaneous Emission from a High-Current-Density Quantum-Dot LED , 2022, 2204.01929.

[5]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared laser with room-temperature tuneable emission in the optical telecommunications window , 2021, Nature Photonics.

[6]  V. Klimov,et al.  Prospects and challenges of colloidal quantum dot laser diodes , 2021, Nature Photonics.

[7]  R. Schaller,et al.  Colloidal quantum dot lasers , 2021, Nature Reviews Materials.

[8]  A. Houtepen,et al.  Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids , 2020, ACS nano.

[9]  Teri W. Odom,et al.  Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. , 2020, ACS nano.

[10]  Jaehoon Lim,et al.  Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity , 2020, Nature Communications.

[11]  Victor I. Klimov,et al.  Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity , 2019, Science.

[12]  Zeger Hens,et al.  A bright future for colloidal quantum dot lasers , 2019, NPG Asia Materials.

[13]  Chihaya Adachi,et al.  Indication of current-injection lasing from an organic semiconductor , 2019, Applied Physics Express.

[14]  Jaehoon Lim,et al.  Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. , 2018, Nano letters.

[15]  A. Zakhidov,et al.  Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. , 2018, ACS nano.

[16]  Markus Karl,et al.  Flexible and ultra-lightweight polymer membrane lasers , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[17]  Barry P. Rand,et al.  Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor , 2017, Nature Photonics.

[18]  Kaifeng Wu,et al.  Towards zero-threshold optical gain using charged semiconductor quantum dots. , 2017, Nature nanotechnology.

[19]  R. Quintero‐Bermudez,et al.  Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy , 2017, Nature.

[20]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[21]  Savas Delikanli,et al.  Amplified spontaneous emission and lasing in colloidal nanoplatelets. , 2014, ACS nano.

[22]  Lazaro A. Padilha,et al.  Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes , 2013, Nature Communications.

[23]  Amr S Helmy,et al.  Bragg reflection waveguide diode lasers. , 2009, Optics letters.

[24]  Philippe Guyot-Sionnest,et al.  Light Emission and Amplification in Charged CdSe Quantum Dots , 2004 .

[25]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[26]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[27]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[28]  Volker Wittwer,et al.  A flexible conjugated polymer laser , 1998 .

[29]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[30]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[31]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[32]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[33]  A. Yariv,et al.  Transverse Bragg-reflector injection lasers. , 1978, Optics letters.

[34]  P. Yeh,et al.  Bragg reflection waveguides , 1976 .

[35]  Jaehoon Lim,et al.  Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths , 2019, Nature Materials.

[36]  Jaehoon Lim,et al.  Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. , 2018, Nature materials.

[37]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.