The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method
暂无分享,去创建一个
[1] I. I. Gikhman. Convergence to Markov processes , 1969 .
[2] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .
[3] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[4] Creutz. Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.
[5] T Gojobori,et al. Molecular phylogeny and evolution of primate mitochondrial DNA. , 1988, Molecular biology and evolution.
[6] John Villadsen. Simulation of biochemical reactions , 1989 .
[7] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[8] John Geweke,et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .
[9] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[10] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[11] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[12] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[13] M. Einsiedler,et al. Ergodic Theory: with a view towards Number Theory , 2010 .
[14] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[15] Robert J. Adler,et al. Topological complexity of smooth random functions , 2011 .
[16] École d'été de probabilités de Saint-Flour,et al. Topological Complexity of Smooth Random Functions: École d'Été de Probabilités de Saint-Flour XXXIX-2009 , 2011 .
[17] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[18] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[19] E A J F Peters,et al. Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Nando de Freitas,et al. Adaptive Hamiltonian and Riemann Manifold Monte Carlo , 2013, ICML.
[21] Ryan P. Adams,et al. Firefly Monte Carlo: Exact MCMC with Subsets of Data , 2014, UAI.
[22] Werner Krauth,et al. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.
[23] Maurizio Dapor. Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.
[24] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[25] Werner Krauth,et al. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] Werner Krauth,et al. Event-chain Monte Carlo for classical continuous spin models , 2015, 1508.06541.
[27] Corrado Priami,et al. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm. , 2015, The Journal of chemical physics.
[28] Tobias A. Kampmann,et al. Monte Carlo simulation of dense polymer melts using event chain algorithms. , 2015, The Journal of chemical physics.
[29] Cheng Soon Ong,et al. Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .
[30] Nicholas Galbraith. On Event-Chain Monte Carlo Methods , 2016 .
[31] Michela Ottobre,et al. Markov Chain Monte Carlo and Irreversibility , 2016 .
[32] Nando de Freitas,et al. Bayesian Analysis of Continuous Time Markov Chains with Application to Phylogenetic Modelling , 2016 .
[33] Yee Whye Teh,et al. Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..
[34] Arnaud Doucet,et al. On Markov chain Monte Carlo methods for tall data , 2015, J. Mach. Learn. Res..
[35] P. Fearnhead,et al. The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.