Constructions d'ordres, analyse de la complexité

Le theme de la these concerne l'etude des ordres, en termes de complexite en reecriture, mais aussi dans le cadre des termes ordinaux, des hierarchies de fonctions sous-recursives. Nous avons cherche a extraire de la notion de preuve de terminaison des informations concernant la complexite des fonctions calculees par des systemes de reecriture. Cela nous a permis d'etablir de nombreuses caracterisations, en termes de complexite, des systemes de reecriture. Ainsi, est-il possible de determiner a priori la complexite d'un systeme, au seul vu de sa preuve de terminaison. Nous etudions plus specifiquement le cas de l'ordre de Knuth-Bendix et celui de l'ordre par interpretation polynomiale. D'autre part, nous avons entame une recherche plus fondamentale concernant la representation de la notion d'ordre dans les [lambda]-calculs types. Cet interet provient de ce qu'une telle representation est necessaire des lors que l'on veut representer des structures definies par des operateurs [omega] -aire, ce qui est le cas des termes ordinaux par exemple. Nous etudions d'un point de vue semantique l'univers de travail, nous degageons en particulier une notion de structure monoidale fermee, mais aussi de maniere syntaxique en proposant un calcul pour lequel un type represente un graphe plutot qu'un (traditionnel) ensemble.

[1]  Guillaume Bonfante,et al.  Algorithms with polynomial interpretation termination proof , 2001, Journal of Functional Programming.

[2]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[3]  Ursula Martin,et al.  How to Choose Weights in the Knuth Bendix Ordering , 1987, RTA.

[4]  G. Huet,et al.  Equations and rewrite rules: a survey , 1980 .

[5]  C. Berge Graphes et hypergraphes , 1970 .

[6]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[7]  Christine Paulin-Mohring,et al.  Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.

[8]  P. Dybjer Inductive sets and families in Martin-Lo¨f's type theory and their set-theoretic semantics , 1991 .

[9]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[10]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[11]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[12]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[13]  S. Kleene General recursive functions of natural numbers , 1936 .

[14]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[15]  Andreas Weiermann,et al.  Termination Proofs for Term Rewriting Systems by Lexicographic Path Orderings Imply Multiply Recursive Derivation Lengths , 1995, Theor. Comput. Sci..

[16]  Dieter Hofbauer,et al.  Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.

[17]  Susumu Hayashi,et al.  Adjunction of Semifunctors: Categorical Structures in Nonextensional Lambda Calculus , 1985, Theor. Comput. Sci..

[18]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[19]  F W Lawvere,et al.  AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Elias Tahhan-Bittar,et al.  Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..

[21]  J. Urgen Giesl A System for Termination Proofs using Polynomial Orderings , 1995 .

[22]  S. S. Wainer,et al.  Subrecursive hierarchies via direct limits , 1984 .

[23]  Hélène Touzet,et al.  An Ordinal Calculus for Proving Termination in Term Rewriting , 1996, CAAP.

[24]  E. A. Cichon,et al.  The slow-growing and the Graegorczyk hierarchies , 1983, Journal of Symbolic Logic.

[25]  Peter Dybjer,et al.  A Finite Axiomatization of Inductive-Recursive Definitions , 1999, TLCA.

[26]  Alan P. Parkes Logic and Computation , 2002 .

[27]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[28]  Pierre Lescanne,et al.  Polynomial Interpretations and the Complexity of Algorithms , 1992, CADE.

[29]  Peter Dybjer,et al.  A general formulation of simultaneous inductive-recursive definitions in type theory , 2000, Journal of Symbolic Logic.

[30]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[31]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[32]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[33]  Hélène Touzet Propriétés combinatoires pour la terminaison de systèmes de réécriture. (Combinatorial properties for termination in term rewriting theory) , 1997 .

[34]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[35]  Andrew M. Pitts,et al.  A note on russell's paradox in locally cartesian closed categories , 1989, Stud Logica.

[36]  J. Urgen Giesl Generating Polynomial Orderings for Termination Proofs ? , 1995 .

[37]  David Maier,et al.  The Complexity of Some Problems on Subsequences and Supersequences , 1978, JACM.

[38]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[39]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[40]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[41]  Dieter Hofbauer Termination proofs and derivation lengths in term rewriting systems , 1992 .

[42]  Dieter Hofbauer Termination Proofs by Multiset Path Orderings Imply Primitive Recursive Derivation Lengths , 1992, Theor. Comput. Sci..

[43]  Pierre Lescanne,et al.  Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation , 1987, Sci. Comput. Program..

[44]  C. Yates Recursive Functions , 1970, Nature.

[45]  Dan Synek,et al.  A Set Constructor for Inductive Sets in Martin-Löf's Type Theory , 1989, Category Theory and Computer Science.

[46]  Jean-Yves Marion,et al.  Efficient First Order Functional Program Interpreter with Time Bound Certifications , 2000, LPAR.

[47]  Robert D. Tennent,et al.  Semantics of programming languages , 1991, Prentice Hall International Series in Computer Science.

[48]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[49]  Yuri Gurevich,et al.  Tailoring Recursion for Complexity , 1995, J. Symb. Log..

[50]  Stanley S. Wainer,et al.  Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.

[51]  Yuri Gurevich,et al.  The Sequential ASM Thesis , 2001, Bull. EATCS.

[52]  Mark W. Krentel The Complexity of Optimization Problems , 1986, Computational Complexity Conference.

[53]  Thierry Coquand,et al.  Inductively defined types , 1988, Conference on Computer Logic.

[54]  R. M. Robinson Review: Paul Csillag, Eine Bemerkung zur Auflosung der Eingeschachtelten Rekursion , 1948 .

[55]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[56]  Jean-Yves Marion,et al.  The Light Lexicographic path Ordering , 2000, ArXiv.

[57]  Nax Paul Mendler,et al.  Predictive type universes and primitive recursion , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[58]  Guillaume Bonfante,et al.  Complexity Classes and Rewrite Systems with Polynomial Interpretation , 1998, CSL.

[59]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[60]  Gérard Huet,et al.  On the Uniform Halting Problem for Term Rewriting Systems , 1978 .

[61]  W. G. Handley,et al.  Complexity of Primitive Recursion , 1999 .

[62]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[63]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[64]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[65]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[66]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[67]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[68]  A. Church,et al.  Some properties of conversion , 1936 .