Apparent critical phenomena in the superionic phase transition of Cu2-xSe
暂无分享,去创建一个
Maxim Avdeev | G. J. Snyder | G. Jeffrey Snyder | Stephen Dongmin Kang | Umut Aydemir | M. Avdeev | S. D. Kang | A. Studer | S. Danilkin | U. Aydemir | Sergey Danilkin | Andrew J Studer | G. J. Snyder
[1] B. Huberman,et al. Superionic conductors: Transitions, structures, dynamics , 1979 .
[2] G. J. Snyder,et al. Thermoelectric efficiency and compatibility. , 2003, Physical review letters.
[3] D. Fontaine. Configurational Thermodynamics of Solid Solutions , 1979 .
[4] B. Ruscic,et al. Superstructural ordering in low-temperature phase of superionic Cu2Se , 1987 .
[5] Hui Wang,et al. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer , 2012 .
[6] M. Daszkiewicz,et al. Crystal structure of Cu2Se , 2011 .
[7] C. Uher,et al. Thermoelectric properties of Ag-doped Cu2Se and Cu2Te , 2013 .
[8] K. Mills,et al. The heat capacity and enthalpy of some hume—rothery phases formed by copper, silver and gold. Part II. Cu + Ge, Cu + Sn, Ag + Sn, Au + Sn, Au + Pb systems , 1981 .
[9] G. J. Snyder,et al. A high temperature apparatus for measurement of the Seebeck coefficient. , 2011, The Review of scientific instruments.
[10] M. Knapp,et al. Structural behaviour of β-Cu2−δSe (δ = 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction , 2006 .
[11] E. M. Lifshitz,et al. Statistical physics. Pt.1, Pt.2 , 1980 .
[12] G. J. Snyder,et al. Copper ion liquid-like thermoelectrics. , 2012, Nature materials.
[13] G. J. Snyder,et al. Complex thermoelectric materials. , 2008, Nature materials.
[14] G. J. Snyder,et al. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.
[15] M. Mori,et al. Valence band photoemission study of the copper chalcogenide compounds, Cu2S, Cu2Se and Cu2Te , 2003 .
[16] Xingyu Gao,et al. Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.
[17] G. Mahan. The Seebeck coefficient of superionic conductors , 2015 .
[18] B. Monaghan,et al. Some Thermal Properties of a Copper–Tin Alloy , 1999 .
[19] A. Delin,et al. Density functional theory study of the electronic structure of fluorite Cu2Se , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[20] K. Chrissafis,et al. Studying Cu2–xSe phase transformation through DSC examination , 2006 .
[21] D. J. Bergman,et al. Thermoelectric properties of a composite medium , 1991 .
[22] G. J. Snyder,et al. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides , 2013 .
[23] A. Khachaturyan. Ordering in substitutional and interstitial solid solutions , 1978 .
[24] C. Uher,et al. Low-Temperature Structure and Dynamics in Cu2Se , 2015 .
[25] Rolf Landauer,et al. The Electrical Resistance of Binary Metallic Mixtures , 1952 .
[26] M. Sale,et al. Neutron scattering study of ionic diffusion in Cu–Se superionic compounds , 2012 .
[27] C. Uher,et al. Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide , 2013 .
[28] G. J. Snyder,et al. High Thermoelectric Performance in Non‐Toxic Earth‐Abundant Copper Sulfide , 2014, Advanced materials.
[29] T. Ishikawa,et al. Electronic and Ionic Conduction in Cu2-δSe, Cu2-δS and Cu2-δ(Se, S) , 1977 .
[30] Z. Ogorelec,et al. Composition-induced phase-transition splitting in cuprous selenide , 1981 .