Apparent critical phenomena in the superionic phase transition of Cu2-xSe

The superionic phase transition of Cu_(2-x)Se accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. Understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.

[1]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[2]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[3]  D. Fontaine Configurational Thermodynamics of Solid Solutions , 1979 .

[4]  B. Ruscic,et al.  Superstructural ordering in low-temperature phase of superionic Cu2Se , 1987 .

[5]  Hui Wang,et al.  Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer , 2012 .

[6]  M. Daszkiewicz,et al.  Crystal structure of Cu2Se , 2011 .

[7]  C. Uher,et al.  Thermoelectric properties of Ag-doped Cu2Se and Cu2Te , 2013 .

[8]  K. Mills,et al.  The heat capacity and enthalpy of some hume—rothery phases formed by copper, silver and gold. Part II. Cu + Ge, Cu + Sn, Ag + Sn, Au + Sn, Au + Pb systems , 1981 .

[9]  G. J. Snyder,et al.  A high temperature apparatus for measurement of the Seebeck coefficient. , 2011, The Review of scientific instruments.

[10]  M. Knapp,et al.  Structural behaviour of β-Cu2−δSe (δ = 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction , 2006 .

[11]  E. M. Lifshitz,et al.  Statistical physics. Pt.1, Pt.2 , 1980 .

[12]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[13]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[14]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[15]  M. Mori,et al.  Valence band photoemission study of the copper chalcogenide compounds, Cu2S, Cu2Se and Cu2Te , 2003 .

[16]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[17]  G. Mahan The Seebeck coefficient of superionic conductors , 2015 .

[18]  B. Monaghan,et al.  Some Thermal Properties of a Copper–Tin Alloy , 1999 .

[19]  A. Delin,et al.  Density functional theory study of the electronic structure of fluorite Cu2Se , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  K. Chrissafis,et al.  Studying Cu2–xSe phase transformation through DSC examination , 2006 .

[21]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[22]  G. J. Snyder,et al.  Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides , 2013 .

[23]  A. Khachaturyan Ordering in substitutional and interstitial solid solutions , 1978 .

[24]  C. Uher,et al.  Low-Temperature Structure and Dynamics in Cu2Se , 2015 .

[25]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[26]  M. Sale,et al.  Neutron scattering study of ionic diffusion in Cu–Se superionic compounds , 2012 .

[27]  C. Uher,et al.  Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide , 2013 .

[28]  G. J. Snyder,et al.  High Thermoelectric Performance in Non‐Toxic Earth‐Abundant Copper Sulfide , 2014, Advanced materials.

[29]  T. Ishikawa,et al.  Electronic and Ionic Conduction in Cu2-δSe, Cu2-δS and Cu2-δ(Se, S) , 1977 .

[30]  Z. Ogorelec,et al.  Composition-induced phase-transition splitting in cuprous selenide , 1981 .