Input-to-State Stability for Nonlinear Model Predictive Control

In this paper regional input-to-state stability (ISS) is introduced and studied in order to analyze the domain of attraction of nonlinear constrained systems with disturbances. ISS is derived by means of a non smooth ISS-Lyapunov function with an upper bound guaranteed only in a sub-region of the domain of attraction. These results are used to study the ISS properties of nonlinear model predictive control (MPC) algorithms

[1]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[2]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[3]  E. Receding horizon H , control for nonlinear discrete-time systems , 2004 .

[4]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[5]  Alberto Bemporad,et al.  On the Stability and Robustness of Non-smooth Nonlinear Model Predictive Control , 2005 .

[6]  F. Allgöwer,et al.  A Robust Model Predictive Control Scheme for Constrained Linear Systems , 1998 .

[7]  Andrew R. Teel,et al.  Nominally Robust Model Predictive Control With State Constraints , 2007, IEEE Transactions on Automatic Control.

[8]  Eduardo F. Camacho,et al.  Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties , 2006, Autom..

[9]  L. Magni,et al.  Control design for nonlinear systems: trading robustness and performance with the model predictive control approach , 2005 .

[10]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[11]  Éva Gyurkovics,et al.  Receding horizon H~u control for nonlinear discrete-time systems , 2002 .

[12]  T. Parisini,et al.  Cooperative Control of Distributed Agents with Nonlinear Dynamics and Delayed Information Exchange: a Stabilizing Receding-Horizon Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[14]  Dragan Nesic,et al.  A note on input-to-state stabilization for nonlinear sampled-data systems , 2002, IEEE Trans. Autom. Control..

[15]  Dragan Nesic,et al.  A unified approach to controller design for achieving ISS and related properties , 2005, IEEE Transactions on Automatic Control.

[16]  Zhong-Ping Jiang,et al.  Nonlinear small-gain theorems for discrete-time feedback systems and applications , 2004, Autom..

[17]  Fabian R. Wirth,et al.  Asymptotic stability equals exponential stability, and ISS equals finite energy gain---if you twist your eyes , 1998, math/9812137.

[18]  D. Limón,et al.  Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[19]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[20]  A. Schaft,et al.  A receding-horizon approach to the nonlinear H ∞ control problem , 2000 .

[21]  Frank Allgöwer,et al.  Robust model predictive control for nonlinear discrete‐time systems , 2003 .

[22]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear discrete-time systems , 2007 .

[23]  Riccardo Scattolini,et al.  A stabilizing model-based predictive control algorithm for nonlinear systems , 2001, Autom..

[24]  Arjan van der Schaft,et al.  A receding-horizon approach to the nonlinear Hinfinity control problem , 2001, Autom..

[25]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..