Logical Definability on Infinite Traces

The main results of the present paper are the equivalence of monadic second order logic and recognizability for real trace languages, and that first order definable, star-free, and aperiodic real trace languages form the same class of languages. This generalizes results on infinite words [Tho90a, for an overview] and on finite traces [Tho90b, GRS91] to infinite traces. It closes the last gap in the different characterizations of recognizable infinitary trace languages.

[1]  Edward Ochmanski,et al.  Regular behaviour of concurrent systems , 1985, Bull. EATCS.

[2]  Paul Gastin,et al.  An Extension of Kleene's and Ochmanski's Theorems to Infinite Traces , 1994, Theor. Comput. Sci..

[3]  Wieslaw Zielonka Safe Executions of Recognizable Trace Languages by Asynchronous Automata , 1989, Logic at Botik.

[4]  Yves Métivier Une Condition Suffisante de Reconnaissabilité Dans un Monoïde Partiellement Commutatif , 1986, RAIRO Theor. Informatics Appl..

[5]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[6]  Volker Diekert,et al.  The Book of Traces , 1995 .

[7]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[8]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[9]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[10]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[11]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[12]  Antonio Restivo,et al.  On Aperiodic Trace Languages , 1991, STACS.

[13]  Antonio Restivo,et al.  Star-Free Trace Languages , 1992, Theor. Comput. Sci..

[14]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[15]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[16]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[17]  Grzegorz Rozenberg,et al.  Theory of Traces , 1988, Theor. Comput. Sci..

[18]  Paul Gastin,et al.  A Kleene Theorem for Infinite Trace Languages , 1991, ICALP.

[19]  Volker Diekert On the Concentration of Infinite Traces , 1993, Theor. Comput. Sci..

[20]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[21]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[22]  Dominique Perrin Words over a Partially Commutative Alphabet , 1985 .

[23]  Paul Gastin,et al.  Infinite Traces , 1990, Semantics of Systems of Concurrent Processes.

[24]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[25]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.