Interatomic bonds and the tensile anisotropy of trialuminides in the elastic limit: a density functional study for Al3(Sc, Ti, V, Cr)
暂无分享,去创建一个
M. Krajčí | J. Hafner | M. Jahnátek | M. Krajčí | Juergen Hafner | Michal Jahnatek | J. Hafner | M. Jahnátek
[1] de Fontaine D,et al. Theoretical and experimental study of relaxations in Al3Ti and Al3Zr ordered phases. , 1995, Physical review letters.
[2] Maher Moakher. On the Averaging of Symmetric Positive-Definite Tensors , 2006 .
[3] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[4] Blöchl,et al. Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.
[5] K. Tominaga,et al. Mechanical properties of L12 modified titanium trialuminides alloyed with chromium, iron and vanadium , 2002 .
[6] K. Lu,et al. Nanoindentation measurement of hardness and modulus anisotropy in Ni_3Al single crystals , 2002 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] J. D. Strand,et al. A new look at bonding in trialuminides: reinvestigation of TaAl3. , 2003, Inorganic Chemistry.
[9] P. Nash,et al. Synthesis and properties of trialuminides with ultra-fine microstructures , 1992 .
[10] J. Hafner,et al. Electronic structure and interatomic bonding in Al10V , 2003 .
[11] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[12] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[13] J. Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .
[14] K. Venkateswarlu,et al. Microstructure, tensile strength and wear behaviour of Al–Sc alloy , 2004 .
[15] M. Umemoto,et al. Mechanical properties of nanocrystalline Ti–Al–X alloys , 2002 .
[16] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[17] B. M. Fulk. MATH , 1992 .
[18] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[19] M. Gibson,et al. LOCAL SITE SYMMETRY AND ELECTRONIC STRUCTURE OF TRIALUMINIDE AND RELATED INTERMETALLIC ALLOYS PROBED BY SOLID-STATE NMR , 1998 .
[20] Y. L. Page,et al. Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations , 2001 .
[21] Antonio Maria Cazzani,et al. Extrema of Young’s modulus for cubic and transversely isotropic solids , 2003 .
[22] F. Froes. Structural intermetallics , 1989 .
[23] D. Miracle,et al. Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis , 2001 .
[24] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[25] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[26] C. Fu. Electronic, elastic, and fracture properties of trialuminide alloys: Al_3Sc and Al_3Ti , 1990 .
[27] G Sines,et al. The anisotropy of Young's modulus, shear modulus and Poisson's ratio in cubic materials , 1971 .
[28] E. George,et al. Deformation and Fracture of L12 Trialuminides , 1991 .
[29] Pierre Villars,et al. Pearson's handbook of crystallographic data for intermetallic phases , 1985 .
[30] J. Hafner,et al. Interatomic bonding, elastic properties, and ideal strength of transition metal aluminides: A case study for Al 3 ( V , Ti ) , 2005 .
[31] J. B. Dunlop,et al. Dilute intermetallic compounds. II. Properties of aluminium rich aluminium-transition metal phases , 1974 .
[32] Jackson,et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.
[33] C. P. Chang,et al. The strengthening effect of Al3Ti in ultrafine grained Al-Al3Ti alloys , 1999 .
[34] M. Rovati. On the negative Poisson’s ratio of an orthorhombic alloy , 2003 .
[35] E. George,et al. Brittle cleavage of L1_2 trialuminides , 1990 .
[36] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[37] C. Lue,et al. NMR Study of trialuminide intermetallics , 1998 .
[38] K. Kumar. Ternary intermetallics in aluminiumrefractory metal-X systems (X = V, Cr, Mn, Fe, Co, Ni, Cu, Zn) , 1990 .
[39] P. Kao,et al. The strengthening effect of Al3Ti in high temperature deformation of Al–Al3Ti composites , 1998 .
[40] W. W. Scanlon,et al. Intermetallic Compounds , 1963, Science.
[41] A. Cazzani,et al. Extrema of Young’s modulus for elastic solids with tetragonal symmetry , 2005 .
[42] M. Yoo,et al. Fundamental Aspects of Deformation and Fracture in High-temperature Ordered Intermetallics , 1991 .
[43] J. Hafner,et al. Covalent bonding and bandgap formation in intermetallic compounds: a case study for Al3V , 2002 .
[44] S. Cowin,et al. Averaging Anisotropic Elastic Constant Data , 1997 .
[45] D. Farkas. Interatomic potentials for Ti-Al with and without angular forces , 1994 .
[46] G. Bester,et al. Interpretation of ab initio total energy results in a chemical language: II. Stability of TiAl3 and ScAl3 , 2001 .
[47] D. Miracle,et al. The influence of Zr alloying on the structure and properties of Al 3 Ti , 2003 .
[48] Representation of Elastic Behavior in Cubic Materials for Arbitrary Axes , 1970 .
[49] K. Kimura,et al. Elastic constants of TiAl3 and ZrAl3 single crystals , 1991, Journal of Materials Science.
[50] J. B. Dunlop,et al. Al 10 V: An Einstein Solid , 1973 .
[51] R. Hoffman. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .
[52] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.