Text Categorization Using Informative Vector Machines

In this paper an analysis is given of the application of Bayesian Gaussian process statistical learning algorithms to the problem of text categorization. It is demonstrated that the informative vector machine method, as a sparse Bayesian compression scheme, provides results better than those obtained so far with the support vector machine method, with much less computational cost

[1]  Matthias W. Seeger,et al.  Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .

[2]  Neil D. Lawrence,et al.  A Sparse B ayesian Compression Scheme — The Informative Vector Machine , 2001 .

[3]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[4]  Daphne Koller,et al.  Using machine learning to improve information access , 1998 .

[5]  Neil D. Lawrence,et al.  Learning to learn with the informative vector machine , 2004, ICML.

[6]  David C. Blair,et al.  Information retrieval and the philosophy of language , 1992, Annu. Rev. Inf. Sci. Technol..

[7]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[8]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[9]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[10]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[11]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[12]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[13]  L. Csató Gaussian processes:iterative sparse approximations , 2002 .

[14]  Isabelle Moulinier,et al.  Applying an existing machine learning algorithm to text categorization , 1995, Learning for Natural Language Processing.

[15]  Thorsten Joachims,et al.  A Statistical Learning Model of Text Classification for Support Vector Machines. , 2001, SIGIR 2002.

[16]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[17]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[18]  Shi Bing,et al.  Inductive learning algorithms and representations for text categorization , 2006 .