Shorelines of Islands of Tractability: Algorithms for Parsimony and Minimum Perfect Phylogeny Haplotyping Problems

The problem parsimony haplotyping (PH) asks for the smallest set of haplotypes that can explain a given set of genotypes, and the problem minimum perfect phylogeny haplotyping (MPPH) asks for the smallest such set that also allows the haplotypes to be embedded in a perfect phylogeny, an evolutionary tree with biologically motivated restrictions. For PH, we extend recent work by further mapping the interface between "easy" and "hard" instances, within the framework of (k, f)-bounded instances, where the number of 2s per column and row of the input matrix is restricted. By exploring, in the same way, the tractability frontier of MPPH, we provide the first concrete positive results for this problem. In addition, we construct for both PH and MPPH polynomial time approximation algorithms, based on properties of the columns of the input matrix.

[1]  Leo van Iersel,et al.  Shorelines of Islands of Tractability: Algorithms for Parsimony and Minimum Perfect Phylogeny Haplotyping Problems , 2008, IEEE ACM Trans. Comput. Biol. Bioinform..

[2]  Leo van Iersel,et al.  Beaches of Islands of Tractability: Algorithms for Parsimony and Minimum Perfect Phylogeny Haplotyping Problems , 2006, WABI.

[3]  Paola Bonizzoni,et al.  The Haplotyping problem: An overview of computational models and solutions , 2003, Journal of Computer Science and Technology.

[4]  Roded Sharan,et al.  Islands of Tractability for Parsimony Haplotyping , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Shibu Yooseph,et al.  A Survey of Computational Methods for Determining Haplotypes , 2002, Computational Methods for SNPs and Haplotype Inference.

[6]  Giuseppe Lancia,et al.  Haplotyping Populations by Pure Parsimony: Complexity of Exact and Approximation Algorithms , 2004, INFORMS J. Comput..

[7]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[8]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[9]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[10]  Yun S. Song,et al.  Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event , 2005, WABI.

[11]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[12]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.

[13]  Leo van Iersel,et al.  On the Complexity of Several Haplotyping Problems , 2005, WABI.

[14]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[15]  Dan Gusfield,et al.  A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem , 2005, RECOMB.

[16]  Shibu Yooseph,et al.  A Note on Efficient Computation of Haplotypes via Perfect Phylogeny , 2004, J. Comput. Biol..

[17]  Dan Gusfield,et al.  Haplotype Inference by Pure Parsimony , 2003, CPM.

[18]  Ting Chen,et al.  An approximation algorithm for haplotype inference by maximum parsimony. , 2005 .

[19]  Ting Chen,et al.  An approximation algorithm for haplotype inference by maximum parsimony , 2005, SAC '05.

[20]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[21]  Giuseppe Lancia,et al.  A polynomial case of the parsimony haplotyping problem , 2006, Oper. Res. Lett..

[22]  Viggo Kann,et al.  Hardness of Approximating Problems on Cubic Graphs , 1997, CIAC.

[23]  Luonan Chen,et al.  Models and Algorithms for Haplotyping Problem , 2006 .

[24]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[25]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[26]  Daniel G. Brown,et al.  Integer programming approaches to haplotype inference by pure parsimony , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[27]  Amar Mukherjee,et al.  An Optimal Algorithm for Perfect Phylogeny Haplotyping , 2006, J. Comput. Biol..