A large family of filled skutterudites stabilized by electron count.

The Zintl concept is important in solid-state chemistry to explain how some compounds that combine electropositive and main group elements can be stable at formulas that at their simplest level do not make any sense. The electronegative elements in such compounds form a polyatomic electron-accepting molecule inside the solid, a 'polyanion', that fills its available energy states with electrons from the electropositive elements to obey fundamental electron-counting rules. Here we use this concept to discover a large family of filled skutterudites based on the group 9 transition metals Co, Rh, and Ir, the alkali, alkaline-earth, and rare-earth elements, and Sb4 polyanions. Forty-three new filled skutterudites are reported, with 63 compositional variations--results that can be extended to the synthesis of hundreds of additional new compounds. Many interesting electronic and magnetic properties can be expected in future studies of these new compounds.

[1]  D. Adroja,et al.  Spin gap formation in the heavy fermion skutterudite compound CeRu4Sb12 , 2003 .

[2]  T. Yagi,et al.  Magnetic properties of new filled skutterudite compounds GdFe4As12 and TbFe4As12 , 2011 .

[3]  R. Cava,et al.  Negative thermal expansion and antiferromagnetism in the actinide oxypnictide NpFeAsO , 2012, 1205.0438.

[4]  E. J. Freeman,et al.  Electronic and magnetic investigation of the filled skutterudite compound CeRu4Sb12 , 2001 .

[5]  J. Schoen Augmented-Plane-Wave Virtual-Crystal Approximation , 1969 .

[6]  Kotani Exact exchange potential band-structure calculations by the linear muffin-tin orbital-atomic-sphere approximation method for Si, Ge, C, and MnO. , 1995, Physical review letters.

[7]  Mathias V. Schmidt,et al.  High-pressure synthesis and exotic heavy-fermion behaviour of the filled skutterudite SmPt4Ge12 , 2010 .

[8]  C. Choi The Crystal Structures , 1977 .

[9]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[10]  David J. Singh Electronic structure calculations with the Tran-Blaha modified Becke-Johnson Density Functional , 2010, 1009.1807.

[11]  M. Nicklas,et al.  Superconductivity in the platinum germanides MPt4Ge12 (M = rare-earth or alkaline-earth metal) with filled skutterudite structure. , 2007, Physical review letters.

[12]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[13]  T. Yagi,et al.  Electrical and magnetic properties of new filled skutterudites LnFe4P12 (Ln = Ho, Er, Tm and Yb) and YRu4P12 with heavy lanthanide (including Y) prepared at high pressure , 2005 .

[14]  J. Sakamoto,et al.  Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion , 2012 .

[15]  E. Bauer,et al.  Superconductivity and heavy fermion behavior in PrOs 4 Sb 12 , 2002 .

[16]  K. S. Aleksandrov,et al.  Crystal chemistry and prediction of compounds with a structure of skutterudite type , 2007 .

[17]  T. Yagi,et al.  Metal-Insulator Transition in PrRu{sub 4}P{sub 12} with Skutterudite Structure , 1997 .

[18]  M. Baenitz,et al.  Weak itinerant ferromagnetism and electronic and crystal structures of alkali-metal iron antimonides: NaFe4Sb12 and KFe4Sb12 , 2004 .

[19]  T. Yagi,et al.  Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure , 1999 .

[20]  W. Jeitschko,et al.  Magnetic properties of alkaline earth and lanthanoid iron antimonides AFe4Sb12 (A = Ca, Sr, Ba, LaNd, Sm, Eu) with the LaFe4P12 structure , 1996 .

[21]  S. Kauzlarich Chemistry, structure, and bonding of Zintl phases and ions , 1996 .

[22]  Sarma,et al.  Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. , 1996, Physical review. B, Condensed matter.

[23]  A. Kjekshus,et al.  The crystal structures of IrAs3 and IrSb3 , 1961 .

[24]  A. Bjørseth,et al.  Compounds with the Skutterudite Type Crystal Structure. III. Structural Data for Arsenides and Antimonides. , 1974 .

[25]  W. Jeitschko,et al.  Preparation and structural investigations of antimonides with the LaFe4P12 structure , 1980 .

[26]  G. Meisner Superconductivity and magnetic order in ternary rare earth transition metal phosphides , 1981 .

[27]  H. Borrmann,et al.  Filled platinum germanium skutterudites MPt4Ge12 (M = Sr, Ba, La—Nd, Sm, Eu): crystal structure and chemical bonding , 2010 .

[28]  B. Zhang,et al.  Thermoelectric properties of (In,Yb) double-filled CoSb3 skutterudite , 2008 .

[29]  M. Rotter,et al.  BaPt4Ge12: A Skutterudite Based Entirely on a Ge Framework , 2008 .

[30]  D. Vanderbilt,et al.  Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites , 1999, cond-mat/9908364.

[31]  E. J. Freeman,et al.  Heavy fermion behaviour of the cerium-filled skutterudites ? and ? , 1998 .

[32]  W. Pickett,et al.  Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides , 2012, 1204.5905.

[33]  S. Naumov,et al.  Superconductivity and transport properties in LaRu4Sb12 single crystals probed by radiation-induced disordering , 2007 .

[34]  Maple,et al.  Low-temperature properties of rare-earth and actinide iron phosphide compounds MFe4P12 (M = La, Pr, Nd, and Th). , 1987, Physical review. B, Condensed matter.

[35]  M. Kosaka,et al.  Elastic property of TbRu4P12 under pressure , 2009 .

[36]  M. Baenitz,et al.  Crossover between itinerant ferromagnetism and antiferromagnetic fluctuations in filled skutterudites MFe4Sb12 (M = Na, Ba, La) as determined by NMR , 2006 .

[37]  M. Rotter,et al.  Superconductivity in novel Ge-based skutterudites: {Sr,Ba}pt4Ge12. , 2007, Physical review letters.

[38]  Singh,et al.  Skutterudite antimonides: Quasilinear bands and unusual transport. , 1994, Physical review. B, Condensed matter.

[39]  E. Bragg,et al.  Magnetic Susceptibility of MnF2 near TN and Fisher's Relation , 1973 .

[40]  Z. Hiroi,et al.  Rattling Vibrations Observed by Means of Single-Crystal X-ray Diffraction in the Filled Skutterudite ROs4Sb12 (R = La, Ce, Pr, Nd, Sm) , 2011 .

[41]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[42]  G. Papoian,et al.  Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl-Klemm Concept to Nonclassical Electron-Rich Networks. , 2000, Angewandte Chemie.

[43]  T. Fässler S. M. Kauzlarich, Hrsg.: Chemistry, Structure and Bonding of Zintl Phases and Ions. VCH Weinheim, ISBN‐0‐471‐18615‐8, 185,‐ DM , 1998 .

[44]  A. Nakamura,et al.  First Single Crystal Growth of the Transuranium Filled-Skutterudite Compound NpFe4P12 and Its Magnetic and Electrical Properties , 2006 .

[45]  H. Amitsuka,et al.  Specific Heat Study on Sm-based Filled Skutterudite Phosphides SmT4P12 (T=Fe, Ru and Os) , 2005 .

[46]  K. Kihou,et al.  Magnetic properties of TbRu4P12 studied by neutron diffraction , 2005 .

[47]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[48]  R. Jin,et al.  Zintl Compounds: From Power Generation to the Anomalous Hall Effect , 2008 .

[49]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[50]  I. I. Mazin,et al.  CALCULATED THERMOELECTRIC PROPERTIES OF LA-FILLED SKUTTERUDITES , 1997 .

[51]  T. Yagi,et al.  Electrical conductivity and superconductivity of metal phosphides with skutterudite-type structure prepared at high pressure , 1996 .

[52]  Y. Nemoto,et al.  Off-Center Rattling and Tunneling in Filled Skutterudite LaOs4Sb12 , 2008 .

[53]  Donald T. Morelli,et al.  Low temperature properties of the filled skutterudite CeFe4Sb12 , 1995 .

[54]  H. Lutz,et al.  Structure refinement of skutterudite-type cobalt triantimonide, CoSb3 , 1987 .

[55]  W. Pickett,et al.  Dirac point degenerate with massive bands at a topological quantum critical point. , 2010, Physical Review Letters.

[56]  M. Baenitz,et al.  TlFe4Sb12 : Weak itinerant ferromagnetic analogue to alkali-metal iron-antimony skutterudites , 2008 .

[57]  David C. Johnson,et al.  Synthesis and transport properties of HfFe4Sb12 , 2005 .

[58]  E. Bauer,et al.  High thermoelectric performance of triple-filled n-type skutterudites (Sr,Ba,Yb)yCo4Sb12 , 2009 .

[59]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[60]  H. Sugawara,et al.  Quadrupole order and field-induced heavy-fermion state in the filled skutterudite PrFe4P12 via 31P NMR , 2005 .

[61]  E. J. Freeman,et al.  Intermediate valence in the filled skutterudite compound YbFe{sub 4}Sb{sub 12} , 1998 .

[62]  T. Yagi,et al.  Superconductivity of filled skutterudites LaRu{sub 4}As{sub 12} and PrRu{sub 4}As{sub 12} , 1997 .

[63]  O. Jepsen The STUTTGART TB-LMTO-ASA program version 47 , 2000 .

[64]  R. Baumbach,et al.  Non-Fermi liquid behavior in the filled skutterudite compound CeRu4As12 , 2008 .

[65]  J. Betts,et al.  Ordered Magnetic State in PrFe 4 Sb 12 Single Crystals , 2005 .

[66]  Ctirad Uher,et al.  Skutterudite-Based Thermoelectrics , 2005 .