Scalar one-loop integrals for QCD

We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4−2 dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/2,1/1 and 1/0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral.

[1]  J. Andersen,et al.  Loop induced interference effects in Higgs boson plus two jet production at the LHC , 2007, 0709.3513.

[2]  S. Weinzierl,et al.  Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.

[3]  A. Brandhuber,et al.  One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices , 2004, hep-th/0407214.

[4]  E. Glover,et al.  A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.

[5]  S. Dittmaier Separation of soft and collinear singularities from one-loop N-point integrals , 2003, hep-ph/0308246.

[6]  J. Fleischer,et al.  A new hypergeometric representation of one-loop scalar integrals in d dimensions , 2003, hep-ph/0307113.

[7]  G. Duplančić,et al.  Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.

[8]  E. Berger,et al.  Erratum: Next-to-leading order supersymmetric QCD predictions for associated production of gauginos and gluinos [Phys. Rev. D 62 , 095014 (2000)] , 2002, hep-ph/0212306.

[9]  P. Zerwas,et al.  NLO QCD corrections to t anti-t H production in hadron collisions , 2002 .

[10]  G. Duplančić,et al.  Dimensionally regulated one-loop box scalar integrals with massless internal lines , 2000, hep-ph/0006249.

[11]  E. Berger,et al.  Next-to-leading order supersymmetric QCD predictions for associated production of gauginos and gluinos , 2000, hep-ph/0005196.

[12]  E. Berger,et al.  Next-to-leading order SUSY QCD predictions for associated production of gauginos and gluinos , 2000 .

[13]  J. Guillet,et al.  Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.

[14]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998, hep-ph/9807565.

[15]  M. Bilenky,et al.  Dimensionally regularized box and phase-space integrals involving gluons and massive quarks , 1997, hep-ph/9703360.

[16]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[17]  L. Dixon,et al.  Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.

[18]  A. Denner,et al.  A Compact expression for the scalar one loop four point function , 1991 .

[19]  G. J. van Oldenborgh,et al.  FF — a package to evaluate one-loop Feynman diagrams , 1991 .

[20]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[21]  A. Denner,et al.  Infrared divergent scalar box integrals with applications in the electroweak standard model , 1990 .

[22]  W. Beenakker,et al.  QCD Corrections to Heavy Quark Production in p anti-p Collisions , 1989 .

[23]  J. Vermaseren,et al.  Large loop integrals , 1984 .

[24]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[25]  A. E. Terrano,et al.  The perturbative calculation of jet structure in e + e - annihilation , 1981 .

[26]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[27]  D. Melrose Reduction of feynman diagrams , 1965 .

[28]  T. Kinoshita Mass singularities of Feynman amplitudes , 1962 .

[29]  L. Landau On analytic properties of vertex parts in quantum field theory , 1959 .

[30]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[31]  G. Grimaldi,et al.  Il nuovo cimento , 1889 .