A rigorous sequential update strategy for parallel kinetic Monte Carlo simulation
暂无分享,去创建一个
[1] D. Sherrington. Stochastic Processes in Physics and Chemistry , 1983 .
[2] D. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .
[3] Enrique Martínez,et al. Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems , 2008, J. Comput. Phys..
[4] Ruichao Ren,et al. Acceleration of Markov chain Monte Carlo simulations through sequential updating. , 2006, The Journal of chemical physics.
[5] Jacques G. Amar,et al. Synchronous relaxation algorithm for parallel kinetic Monte Carlo , 2004 .
[6] David R. Jefferson,et al. Virtual time , 1985, ICPP.
[7] H. Trotter. On the product of semi-groups of operators , 1959 .
[8] David D L Minh,et al. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation , 2011, Proceedings of the National Academy of Sciences.
[9] G. Orkoulas,et al. Spatial updating Monte Carlo algorithms in particle simulations , 2010 .
[10] W. H. Weinberg,et al. Theoretical foundations of dynamical Monte Carlo simulations , 1991 .
[11] Jerome Nilmeier,et al. Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. , 2008, Journal of chemical theory and computation.
[12] Mark E. Tuckerman,et al. Reversible multiple time scale molecular dynamics , 1992 .
[13] A. Barker. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .
[14] M. Kalos,et al. Monte Carlo methods , 1986 .
[15] M. Fisher,et al. Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .
[16] G. Orkoulas,et al. Spatial updating in the great grand canonical ensemble. , 2009, The Journal of chemical physics.
[17] Steven J. Plimpton,et al. Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo , 2009 .
[18] 鈴木 増雄. Time-Dependent Statistics of the Ising Model , 1965 .
[19] Zoltán Toroczkai,et al. Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations , 2003, Science.
[20] Michael E. Fisher,et al. Bounded and inhomogeneous Ising models. III. Regularly spaced point defects , 1976 .
[21] B. Berne,et al. Multiple "time step" Monte Carlo , 2002 .
[22] Gerassimos Orkoulas,et al. Simulation of phase transitions via spatial updating and tempering , 2010 .
[23] Petr Plechác,et al. Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms , 2011, J. Comput. Phys..
[24] Enrique Martínez,et al. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems , 2010, J. Comput. Phys..
[25] Gyorgy Korniss,et al. Massively Parallel Algorithms, Fluctuating Time Horizons, and Non-equilibrium Surface Growth , 2000 .
[26] A. B. Bortz,et al. A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .
[27] M. A. Novotny,et al. Statistical properties of the simulated time horizon in conservative parallel discrete-event simulations , 2002, SAC '02.
[28] Jacques G. Amar,et al. Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth , 2005 .
[29] Michael W. Deem,et al. Strict detailed balance is unnecessary in Monte Carlo simulation , 1999 .