A rigorous sequential update strategy for parallel kinetic Monte Carlo simulation

The kinetic Monte Carlo (kMC) method is used in many scientific fields in applications involving rare-event transitions. Due to its discrete stochastic nature, efforts to parallelize kMC approaches often produce unbalanced time evolutions requiring complex implementations to ensure correct statistics. In the context of parallel kMC, the sequential update technique has shown promise by generating high quality distributions with high relative efficiencies for short-range systems. In this work, we provide an extension of the sequential update method in a parallel context that rigorously obeys detailed balance, which guarantees exact equilibrium statistics for all parallelization settings. Our approach also preserves nonequilibrium dynamics with minimal error for many parallelization settings, and can be used to achieve highly precise sampling.

[1]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[2]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[3]  Enrique Martínez,et al.  Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems , 2008, J. Comput. Phys..

[4]  Ruichao Ren,et al.  Acceleration of Markov chain Monte Carlo simulations through sequential updating. , 2006, The Journal of chemical physics.

[5]  Jacques G. Amar,et al.  Synchronous relaxation algorithm for parallel kinetic Monte Carlo , 2004 .

[6]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[7]  H. Trotter On the product of semi-groups of operators , 1959 .

[8]  David D L Minh,et al.  Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation , 2011, Proceedings of the National Academy of Sciences.

[9]  G. Orkoulas,et al.  Spatial updating Monte Carlo algorithms in particle simulations , 2010 .

[10]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[11]  Jerome Nilmeier,et al.  Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. , 2008, Journal of chemical theory and computation.

[12]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[13]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[14]  M. Kalos,et al.  Monte Carlo methods , 1986 .

[15]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[16]  G. Orkoulas,et al.  Spatial updating in the great grand canonical ensemble. , 2009, The Journal of chemical physics.

[17]  Steven J. Plimpton,et al.  Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo , 2009 .

[18]  鈴木 増雄 Time-Dependent Statistics of the Ising Model , 1965 .

[19]  Zoltán Toroczkai,et al.  Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations , 2003, Science.

[20]  Michael E. Fisher,et al.  Bounded and inhomogeneous Ising models. III. Regularly spaced point defects , 1976 .

[21]  B. Berne,et al.  Multiple "time step" Monte Carlo , 2002 .

[22]  Gerassimos Orkoulas,et al.  Simulation of phase transitions via spatial updating and tempering , 2010 .

[23]  Petr Plechác,et al.  Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms , 2011, J. Comput. Phys..

[24]  Enrique Martínez,et al.  Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems , 2010, J. Comput. Phys..

[25]  Gyorgy Korniss,et al.  Massively Parallel Algorithms, Fluctuating Time Horizons, and Non-equilibrium Surface Growth , 2000 .

[26]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[27]  M. A. Novotny,et al.  Statistical properties of the simulated time horizon in conservative parallel discrete-event simulations , 2002, SAC '02.

[28]  Jacques G. Amar,et al.  Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth , 2005 .

[29]  Michael W. Deem,et al.  Strict detailed balance is unnecessary in Monte Carlo simulation , 1999 .