All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics

This paper presents an asymptotic preserving (AP) all Mach number finite volume shock capturing method for the numerical solution of compressible Euler equations of gas dynamics. Both isentropic and full Euler equations are considered. The equations are discretized on a staggered grid. This simplifies flux computation and guarantees a natural central discretization in the low Mach limit, thus dramatically reducing the excessive numerical diffusion of upwind discretizations. Furthermore, second order accuracy in space is automatically guaranteed. For the time discretization we adopt an Semi-IMplicit/EXplicit (S-IMEX) discretization getting an elliptic equation for the pressure in the isentropic case and for the energy in the full Euler case. Such equations can be solved linearly so that we do not need any iterative solver thus reducing computational cost. Second order in time is obtained by a suitable S-IMEX strategy taken from Boscarino et al. (J Sci Comput 68:975–1001, 2016). Moreover, the CFL stability condition is independent of the Mach number and depends essentially on the fluid velocity. Numerical tests are displayed in one and two dimensions to demonstrate performance of our scheme in both compressible and incompressible regimes.

[1]  Giovanni Russo,et al.  Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..

[2]  Raimund Bürger,et al.  On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation , 2016 .

[3]  Lorenzo Pareschi,et al.  Efficient Stochastic Asymptotic-Preserving IMEX Methods for Transport Equations with Diffusive Scalings and Random Inputs , 2017 .

[4]  Frédéric Coquel,et al.  Local Time Stepping Applied to Implicit-Explicit Methods for Hyperbolic Systems , 2010, Multiscale Model. Simul..

[5]  Koottungal Revi Arun,et al.  An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .

[6]  Philippe G. LeFloch,et al.  High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..

[7]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[8]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[9]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[10]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[11]  Adriano Festa,et al.  The Hughes model for pedestrian dynamics and congestion modelling , 2016 .

[12]  G. Ferretti,et al.  An adaptive multilevel radial basis function scheme for the HJB equation , 2017 .

[13]  Frédéric Coquel,et al.  Entropy-satisfying relaxation method with large time-steps for Euler IBVPs , 2010, Math. Comput..

[14]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[15]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[16]  P. Mulet,et al.  Approximate Taylor methods for ODEs , 2017 .

[17]  Giovanni Russo,et al.  Implicit-Explicit Integral Deferred Correction Methods for Stiff Problems , 2017, SIAM J. Sci. Comput..

[18]  Roberto Ferretti,et al.  A semi-Lagrangian scheme with radial basis approximation for surface reconstruction , 2016, Comput. Vis. Sci..

[19]  A. S. Almgren,et al.  MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS , 2010, 1005.0112.

[20]  Frédéric Coquel,et al.  Large Time Step Positivity-Preserving Method for Multiphase Flows , 2008 .

[21]  Lorenzo Pareschi,et al.  Central Runge-Kutta Schemes for Conservation Laws , 2005, SIAM J. Sci. Comput..

[22]  Ernst Hairer,et al.  Examples of Stiff Equations , 1996 .

[23]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[24]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[25]  Raphaël Loubère,et al.  Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions , 2018, J. Comput. Phys..

[26]  P. B. Whalley,et al.  Measurements of the speed of sound in air-water flows , 1997 .

[27]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[28]  Chi-Wang Shu,et al.  Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..

[29]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[30]  Giovanni Russo,et al.  Semi-Conservative Finite Volume Schemes for Conservation Laws , 2019, SIAM J. Sci. Comput..

[31]  Lorenzo Pareschi,et al.  A Unified IMEX Runge-Kutta Approach for Hyperbolic Systems with Multiscale Relaxation , 2017, SIAM J. Numer. Anal..

[32]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[33]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[34]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[35]  Giovanni Russo,et al.  High order finite volume schemes for balance laws with stiff relaxation , 2018, Computers & Fluids.

[36]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[37]  S. Jin,et al.  MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .

[38]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[39]  D. Elsworth Computational Methods in Fluid Flow , 1993 .

[40]  Frédéric Coquel,et al.  Local time stepping with adaptive time step control for a two-phase fluid system , 2009 .

[41]  Paul Arminjon,et al.  A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids , 1998 .

[42]  Cécile Viozat,et al.  Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .

[43]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[44]  Florian Bernard,et al.  Linearly implicit all Mach number shock capturing schemes for the Euler equations , 2019, J. Comput. Phys..

[45]  Frédéric Coquel,et al.  Multiresolution technique and explicit–implicit scheme for multicomponent flows , 2006, J. Num. Math..

[46]  Francis Filbet,et al.  High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations , 2016, Journal of Scientific Computing.

[47]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[48]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[49]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[50]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[51]  R. Ferretti,et al.  Blended numerical schemes for the advection equation and conservation laws , 2015, 1507.07092.

[53]  P. V. F. Edelmann,et al.  New numerical solver for flows at various Mach numbers , 2014, 1409.8289.

[54]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[55]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[56]  Gabriella Puppo,et al.  An all-speed relaxation scheme for gases and compressible materials , 2017, J. Comput. Phys..

[57]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[58]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[59]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[60]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[61]  Raimund Bürger,et al.  Linearly Implicit IMEX Runge-Kutta Methods for a Class of Degenerate Convection-Diffusion Problems , 2015, SIAM J. Sci. Comput..