All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
暂无分享,去创建一个
[1] Giovanni Russo,et al. Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..
[2] Raimund Bürger,et al. On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation , 2016 .
[3] Lorenzo Pareschi,et al. Efficient Stochastic Asymptotic-Preserving IMEX Methods for Transport Equations with Diffusive Scalings and Random Inputs , 2017 .
[4] Frédéric Coquel,et al. Local Time Stepping Applied to Implicit-Explicit Methods for Hyperbolic Systems , 2010, Multiscale Model. Simul..
[5] Koottungal Revi Arun,et al. An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .
[6] Philippe G. LeFloch,et al. High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..
[7] E. Turkel,et al. Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .
[8] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[9] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[10] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[11] Adriano Festa,et al. The Hughes model for pedestrian dynamics and congestion modelling , 2016 .
[12] G. Ferretti,et al. An adaptive multilevel radial basis function scheme for the HJB equation , 2017 .
[13] Frédéric Coquel,et al. Entropy-satisfying relaxation method with large time-steps for Euler IBVPs , 2010, Math. Comput..
[14] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[15] A. Majda,et al. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .
[16] P. Mulet,et al. Approximate Taylor methods for ODEs , 2017 .
[17] Giovanni Russo,et al. Implicit-Explicit Integral Deferred Correction Methods for Stiff Problems , 2017, SIAM J. Sci. Comput..
[18] Roberto Ferretti,et al. A semi-Lagrangian scheme with radial basis approximation for surface reconstruction , 2016, Comput. Vis. Sci..
[19] A. S. Almgren,et al. MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS , 2010, 1005.0112.
[20] Frédéric Coquel,et al. Large Time Step Positivity-Preserving Method for Multiphase Flows , 2008 .
[21] Lorenzo Pareschi,et al. Central Runge-Kutta Schemes for Conservation Laws , 2005, SIAM J. Sci. Comput..
[22] Ernst Hairer,et al. Examples of Stiff Equations , 1996 .
[23] G. Russo,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .
[24] Claus-Dieter Munz,et al. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..
[25] Raphaël Loubère,et al. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions , 2018, J. Comput. Phys..
[26] P. B. Whalley,et al. Measurements of the speed of sound in air-water flows , 1997 .
[27] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[28] Chi-Wang Shu,et al. Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..
[29] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[30] Giovanni Russo,et al. Semi-Conservative Finite Volume Schemes for Conservation Laws , 2019, SIAM J. Sci. Comput..
[31] Lorenzo Pareschi,et al. A Unified IMEX Runge-Kutta Approach for Hyperbolic Systems with Multiscale Relaxation , 2017, SIAM J. Numer. Anal..
[32] Jian‐Guo Liu,et al. An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .
[33] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[34] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[35] Giovanni Russo,et al. High order finite volume schemes for balance laws with stiff relaxation , 2018, Computers & Fluids.
[36] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[37] S. Jin,et al. MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .
[38] C. Munz,et al. Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .
[39] D. Elsworth. Computational Methods in Fluid Flow , 1993 .
[40] Frédéric Coquel,et al. Local time stepping with adaptive time step control for a two-phase fluid system , 2009 .
[41] Paul Arminjon,et al. A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids , 1998 .
[42] Cécile Viozat,et al. Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .
[43] P. Degond,et al. All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.
[44] Florian Bernard,et al. Linearly implicit all Mach number shock capturing schemes for the Euler equations , 2019, J. Comput. Phys..
[45] Frédéric Coquel,et al. Multiresolution technique and explicit–implicit scheme for multicomponent flows , 2006, J. Num. Math..
[46] Francis Filbet,et al. High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations , 2016, Journal of Scientific Computing.
[47] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[48] Pierre Degond,et al. An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..
[49] C. Munz,et al. The extension of incompressible flow solvers to the weakly compressible regime , 2003 .
[50] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[51] R. Ferretti,et al. Blended numerical schemes for the advection equation and conservation laws , 2015, 1507.07092.
[53] P. V. F. Edelmann,et al. New numerical solver for flows at various Mach numbers , 2014, 1409.8289.
[54] Lorenzo Pareschi,et al. Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..
[55] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[56] Gabriella Puppo,et al. An all-speed relaxation scheme for gases and compressible materials , 2017, J. Comput. Phys..
[57] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[58] Stéphane Dellacherie,et al. Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..
[59] Ronald Fedkiw,et al. A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..
[60] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[61] Raimund Bürger,et al. Linearly Implicit IMEX Runge-Kutta Methods for a Class of Degenerate Convection-Diffusion Problems , 2015, SIAM J. Sci. Comput..