Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations
暂无分享,去创建一个
Qiang Du | Lili Ju | Max D. Gunzburger | M. Gunzburger | Q. Du | L. Ju
[1] Daeryong Lee,et al. Modified K-means algorithm for vector quantizer design , 1997, IEEE Signal Processing Letters.
[2] Qiang Du,et al. Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..
[3] Jack Dongarra,et al. MPI: The Complete Reference , 1996 .
[4] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[5] Myoungshic Jhun,et al. BOOTSTRAPPING K -MEANS CLUSTERING , 1990 .
[6] Hanan Samet,et al. The Design and Analysis of Spatial Data Structures , 1989 .
[7] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[8] Jon Louis Bentley,et al. Multidimensional binary search trees used for associative searching , 1975, CACM.
[9] M. Gunzburger,et al. Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .
[10] D. Pollard. Strong Consistency of $K$-Means Clustering , 1981 .
[11] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[12] Robert M. Gray,et al. An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..
[13] Vincent Kanade,et al. Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.
[14] Sunil Arya,et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.