Dopaminergic modulation of striatal networks in health and Parkinson's disease

In the last couple of years, there have been significant advances in our understanding of how dopamine modulates striatal circuits underlying goal-directed behaviors and how therapeutic interventions intended to normalize disordered dopaminergic signaling can go awry. This review summarizes some of the advances in this field with a translational focus on Parkinson's disease.

[1]  H. Moore,et al.  Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry , 2014, Neuron.

[2]  A. Barbeau The pathogenesis of Parkinson's disease: a new hypothesis. , 1962, Canadian Medical Association journal.

[3]  Anatol C. Kreitzer,et al.  Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons , 2013, The Journal of Neuroscience.

[4]  Roberto Araya,et al.  Two-photon optical interrogation of individual dendritic spines with caged dopamine. , 2013, ACS chemical neuroscience.

[5]  B. Roth,et al.  Pharmacosynthetics: Reimagining the pharmacogenetic approach , 2013, Brain Research.

[6]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[7]  D. Linden,et al.  A Prolyl-Isomerase Mediates Dopamine-Dependent Plasticity and Cocaine Motor Sensitization , 2013, Cell.

[8]  P. Calabresi,et al.  Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation , 1998, The European journal of neuroscience.

[9]  F. Gonon Prolonged and Extrasynaptic Excitatory Action of Dopamine Mediated by D1 Receptors in the Rat Striatum In Vivo , 1997, The Journal of Neuroscience.

[10]  Erwan Bezard,et al.  Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with l-dopa–induced dyskinesia , 2010, Proceedings of the National Academy of Sciences.

[11]  E. Bézard,et al.  Basal Ganglia Circuits Underlying the Pathophysiology of Levodopa-Induced Dyskinesia , 2010, Front. Neuroanat..

[12]  A. Levey,et al.  Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype- specific antibodies , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  M. Frank,et al.  From reinforcement learning models to psychiatric and neurological disorders , 2011, Nature Neuroscience.

[14]  P. Calabresi,et al.  The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D2/A2A Receptor Interaction in the Striatum: Implications for Parkinson's Disease , 2011, The Journal of Neuroscience.

[15]  P. Greengard,et al.  Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines , 2006, European Neuropsychopharmacology.

[16]  K. Mackie,et al.  CaMKII is a novel regulator of diacylglycerol lipase-α and striatal endocannabinoid signaling , 2013, Nature Neuroscience.

[17]  G. Fisone,et al.  L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission , 2011, Front. Behav. Neurosci..

[18]  E. Bézard,et al.  Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors , 2013, Proceedings of the National Academy of Sciences.

[19]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[20]  Talia N. Lerner,et al.  RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits , 2012, Neuron.

[21]  A. Graybiel,et al.  Prolonged Dopamine Signalling in Striatum Signals Proximity and Value of Distant Rewards , 2013, Nature.

[22]  Kazuto Kobayashi,et al.  Signals through the Striatopallidal Indirect Pathway Stop Movements by Phasic Excitation in the Substantia Nigra , 2013, The Journal of Neuroscience.

[23]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Dagoberto Tapia,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[25]  P. Ortinski,et al.  Extrasynaptic Targeting of NMDA Receptors Following D1 Dopamine Receptor Activation and Cocaine Self-Administration , 2013, The Journal of Neuroscience.

[26]  C. Wilson,et al.  Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  P. Calabresi,et al.  Dopamine-Dependent Long-Term Depression Is Expressed in Striatal Spiny Neurons of Both Direct and Indirect Pathways: Implications for Parkinson's Disease , 2011, The Journal of Neuroscience.

[28]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[29]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[30]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[31]  D. Surmeier,et al.  Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons , 2001, Neuroscience.

[32]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[33]  Bernardo L. Sabatini,et al.  Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors , 2010, Nature Neuroscience.

[34]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.

[35]  Kuei Yuan Tseng,et al.  Aberrant Restoration of Spines and their Synapses in l-DOPA-Induced Dyskinesia: Involvement of Corticostriatal but Not Thalamostriatal Synapses , 2013, The Journal of Neuroscience.

[36]  T. Daigle,et al.  A Gαs DREADD Mouse for Selective Modulation of cAMP Production in Striatopallidal Neurons , 2013, Neuropsychopharmacology.

[37]  D. Lovinger,et al.  Serotonin Induces Long-Term Depression at Corticostriatal Synapses , 2011, The Journal of Neuroscience.

[38]  J. Girault,et al.  Striatal neurones have a specific ability to respond to phasic dopamine release , 2013, The Journal of physiology.

[39]  V. Tumas,et al.  Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease , 2009, Neuroscience.

[40]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[41]  M. Caron,et al.  Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action , 2012, Proceedings of the National Academy of Sciences.

[42]  Bernardo L Sabatini,et al.  Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to Synaptic NMDA Receptor Function and Ca2+ Signaling in Spines , 2014, The Journal of Neuroscience.

[43]  T. Matsuda,et al.  Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesia in hemi-Parkinsonian rats. , 2012, European journal of pharmacology.

[44]  Brian N. Mathur,et al.  Endocannabinoid–Dopamine Interactions in Striatal Synaptic Plasticity , 2012, Front. Pharmacol..

[45]  K. Deisseroth,et al.  Striatal Dopamine Release Is Triggered by Synchronized Activity in Cholinergic Interneurons , 2012, Neuron.

[46]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[47]  D. Lovinger,et al.  Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. , 2012, Cell reports.

[48]  C. Lüscher,et al.  Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour , 2011, Nature.

[49]  A. Sampson,et al.  Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models , 2006, Nature Neuroscience.

[50]  Joshua L Plotkin,et al.  Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites , 2008, The Journal of Neuroscience.

[51]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[52]  D. Lovinger,et al.  Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum , 2014, Nature Neuroscience.

[53]  P. Redgrave,et al.  Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement , 2011, Neuroscience.

[54]  Alexander Hammers,et al.  Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. , 2011, Brain : a journal of neurology.

[55]  Joshua L. Plotkin,et al.  Strain-Specific Regulation of Striatal Phenotype in Drd2-eGFP BAC Transgenic Mice , 2012, The Journal of Neuroscience.

[56]  Denis Hervé,et al.  Gαolf Mutation Allows Parsing the Role of cAMP-Dependent and Extracellular Signal-Regulated Kinase-Dependent Signaling in l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia , 2012, The Journal of Neuroscience.

[57]  C. Kellendonk,et al.  Striatal D2 Receptors Regulate Dendritic Morphology of Medium Spiny Neurons via Kir2 Channels , 2012, The Journal of Neuroscience.

[58]  Bryan L Roth,et al.  Direct-Pathway Striatal Neurons Regulate the Retention of Decision-Making Strategies , 2013, The Journal of Neuroscience.

[59]  P. Greengard,et al.  Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia , 2014, Proceedings of the National Academy of Sciences.

[60]  R. Moratalla,et al.  L-DOPA Treatment Selectively Restores Spine Density in Dopamine Receptor D2–Expressing Projection Neurons in Dyskinetic Mice , 2014, Biological Psychiatry.

[61]  C. Konradi,et al.  Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. , 2010, Progress in brain research.

[62]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[63]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[64]  Anatol C. Kreitzer,et al.  Striatal microcircuitry and movement disorders , 2012, Trends in Neurosciences.

[65]  L. Trudeau,et al.  Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors , 2013, Neuropharmacology.

[66]  R. Gainetdinov,et al.  The Physiology, Signaling, and Pharmacology of Dopamine Receptors , 2011, Pharmacological Reviews.

[67]  J. Kerr,et al.  Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[68]  Anatol C. Kreitzer,et al.  Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons , 2013, Neuron.

[69]  S. Snyder,et al.  Rhes, a striatal–enriched small G–protein, mediates mTOR signaling and L–DOPA–induced dyskinesia , 2011, Nature Neuroscience.

[70]  Steven Finkbeiner,et al.  Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine , 2011, Neuron.

[71]  C. Parsons,et al.  GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats. , 2013, ACS chemical neuroscience.

[72]  P. Calabresi,et al.  Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. , 2011, Brain : a journal of neurology.