A Geometric Description of the Sets of Palindromic and Alternating Matrix Pencils with Bounded Rank
暂无分享,去创建一个
[1] Ricardo Riaza,et al. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .
[2] Bo Kågström,et al. Skew-symmetric matrix pencils : codimension counts and the solution of a pair of matrix equations , 2013 .
[3] I. Shafarevich. Basic algebraic geometry , 1974 .
[4] Torsten Wedhorn,et al. Algebraic Geometry I , 2010 .
[5] C. Schröder. A Structured Kronecker form for the Palindromic Eigenvalue Problem , 2006 .
[6] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[7] Froilán M. Dopico,et al. Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations , 2016, SIAM J. Matrix Anal. Appl..
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] F. M. Dopico,et al. Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree , 2017 .
[10] Froilán M. Dopico,et al. The solution of the equation XA + AXT = 0 and its application to the theory of orbits , 2011 .
[11] J. Humphreys,et al. Linear Algebraic Groups , 1975 .
[12] A. C. Aitken. CANONICAL FORMS FOR CONGRUENCE OF MATRICES: A TRIBUTE TO H. W. TURNBULL AND A. C. AITKEN∗ , 2010 .
[13] Bo Kågström,et al. Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations , 2014 .
[14] Froilán M. Dopico,et al. Low Rank Perturbation of Weierstrass Structure , 2008, SIAM J. Matrix Anal. Appl..
[15] T. Willmore. Algebraic Geometry , 1973, Nature.
[16] J. Landsberg,et al. An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank , 2016, 1606.02574.
[17] Peter Lancaster,et al. The theory of matrices , 1969 .
[18] Claus Führer,et al. Numerical Methods in Multibody Dynamics , 2013 .
[19] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[20] Leonhard Batzke. Generic low rank perturbations of structured regular matrix pencils and structured matrices , 2015 .
[21] Bo Kågström,et al. Orbit Closure Hierarchies of Skew-symmetric Matrix Pencils , 2014, SIAM J. Matrix Anal. Appl..
[22] Armand Borel. Linear Algebraic Groups , 1991 .
[23] Leonhard Batzke. Generic rank-one perturbations of structured regular matrix pencils , 2014 .
[24] Volker Mehrmann,et al. Jordan structures of alternating matrix polynomials , 2010 .
[25] Volker Mehrmann,et al. Parameter-Dependent Rank-One Perturbations of Singular Hermitian Or Symmetric Pencils , 2017, SIAM J. Matrix Anal. Appl..
[26] Volker Mehrmann,et al. On the distance to singularity via low rank perturbations , 2015 .
[27] Froilán M. Dopico,et al. Low Rank Perturbation of Kronecker Structures without Full Rank , 2007, SIAM J. Matrix Anal. Appl..
[28] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[29] F. M. Dopico,et al. Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade , 2017, 1703.05797.
[30] Froilán M. Dopico,et al. A Note on Generic Kronecker Orbits of Matrix Pencils with Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..