A Geometric Description of the Sets of Palindromic and Alternating Matrix Pencils with Bounded Rank

The sets of $n\times n$ $\top$-palindromic, $\top$-antipalindromic, $\top$-even, and $\top$-odd matrix pencils with rank at most $r< n$ are algebraic subsets of the set of $n\times n$ matrix pencil...

[1]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[2]  Bo Kågström,et al.  Skew-symmetric matrix pencils : codimension counts and the solution of a pair of matrix equations , 2013 .

[3]  I. Shafarevich Basic algebraic geometry , 1974 .

[4]  Torsten Wedhorn,et al.  Algebraic Geometry I , 2010 .

[5]  C. Schröder A Structured Kronecker form for the Palindromic Eigenvalue Problem , 2006 .

[6]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[7]  Froilán M. Dopico,et al.  Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations , 2016, SIAM J. Matrix Anal. Appl..

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  F. M. Dopico,et al.  Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree , 2017 .

[10]  Froilán M. Dopico,et al.  The solution of the equation XA + AXT = 0 and its application to the theory of orbits , 2011 .

[11]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[12]  A. C. Aitken CANONICAL FORMS FOR CONGRUENCE OF MATRICES: A TRIBUTE TO H. W. TURNBULL AND A. C. AITKEN∗ , 2010 .

[13]  Bo Kågström,et al.  Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations , 2014 .

[14]  Froilán M. Dopico,et al.  Low Rank Perturbation of Weierstrass Structure , 2008, SIAM J. Matrix Anal. Appl..

[15]  T. Willmore Algebraic Geometry , 1973, Nature.

[16]  J. Landsberg,et al.  An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank , 2016, 1606.02574.

[17]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[18]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[19]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[20]  Leonhard Batzke Generic low rank perturbations of structured regular matrix pencils and structured matrices , 2015 .

[21]  Bo Kågström,et al.  Orbit Closure Hierarchies of Skew-symmetric Matrix Pencils , 2014, SIAM J. Matrix Anal. Appl..

[22]  Armand Borel Linear Algebraic Groups , 1991 .

[23]  Leonhard Batzke Generic rank-one perturbations of structured regular matrix pencils , 2014 .

[24]  Volker Mehrmann,et al.  Jordan structures of alternating matrix polynomials , 2010 .

[25]  Volker Mehrmann,et al.  Parameter-Dependent Rank-One Perturbations of Singular Hermitian Or Symmetric Pencils , 2017, SIAM J. Matrix Anal. Appl..

[26]  Volker Mehrmann,et al.  On the distance to singularity via low rank perturbations , 2015 .

[27]  Froilán M. Dopico,et al.  Low Rank Perturbation of Kronecker Structures without Full Rank , 2007, SIAM J. Matrix Anal. Appl..

[28]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[29]  F. M. Dopico,et al.  Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade , 2017, 1703.05797.

[30]  Froilán M. Dopico,et al.  A Note on Generic Kronecker Orbits of Matrix Pencils with Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..