Acoustic Scattering from Corners, Edges and Circular Cones

Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in $${(0,2\pi)\backslash\{\pi\}}$$(0,2π)\{π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.

[1]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[2]  Guanghui Hu,et al.  Shape Identification in Inverse Medium Scattering Problems with a Single Far-Field Pattern , 2015, SIAM J. Math. Anal..

[3]  Masahiro Yamamoto,et al.  Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave , 2006 .

[4]  Johannes Elschner,et al.  Corners and edges always scatter , 2014 .

[5]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[6]  Rainer Kress,et al.  UNIQUENESS IN INVERSE OBSTACLE SCATTERING , 2002 .

[7]  John Sylvester,et al.  Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators , 2011, SIAM J. Math. Anal..

[8]  Drossos Gintides,et al.  Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality , 2005 .

[9]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[10]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[11]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[12]  Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type , 2014 .

[13]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[14]  Guanghui Hu,et al.  Unique determination of balls and polyhedral scatterers with a single point source wave , 2014 .

[15]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[16]  Steven Kusiak,et al.  The scattering support , 2003 .

[17]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[18]  Rainer Kress,et al.  On uniqueness in inverse obstacle scattering , 1993 .

[19]  D. Colton,et al.  THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM , 1988 .

[20]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[21]  Monique Dauge,et al.  Existence et régularité de la fonction potentiel pour des écoulements subcritiques s'établissant autour d'un corps à singularité conique , 1988 .

[22]  David Colton,et al.  Uniqueness Theorems for the Inverse Problem of Acoustic Scattering , 1983 .

[23]  Plamen Stefanov,et al.  Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering , 2003 .

[24]  V. Edwards Scattering Theory , 1973, Nature.

[25]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[26]  Samuel Karlin,et al.  On certain determinants whose elements are orthogonal polynomials , 1960 .

[27]  Johannes Elschner,et al.  Uniqueness in inverse transmission scattering problems for multilayered obstacles , 2011 .

[28]  O. Yu. Imanuvilov,et al.  Inverse Boundary Value Problem for Schrödinger Equation in Two Dimensions , 2011, SIAM J. Math. Anal..

[29]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[30]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[31]  Rainer Kress,et al.  Uniqueness in inverse obstacle scattering (acoustics) , 1993 .

[32]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[33]  John Sylvester,et al.  Corners Always Scatter , 2012, 1211.1848.

[34]  Jun Zou,et al.  Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers , 2006 .

[35]  Jin Cheng,et al.  Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves , 2005 .

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  Esa V. Vesalainen,et al.  Strictly convex corners scatter , 2014, 1404.2513.

[38]  Victor Isakov,et al.  On uniqueness in th invese transmission scattering problem , 1990 .

[39]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[40]  D. Colton,et al.  The interior transmission problem , 2007 .

[41]  G. Alessandrini,et al.  Corrigendum to ``Determining a sound-soft polyhedral scatterer by a single far-field measurement'' , 2003, math/0307004.