Observers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown

Abstract This article aims the observer synthesis for uncertain nonlinear systems and affected by unknown inputs, represented under the multiple model (MM) formulation with unmeasurable premise variables. A proportional integral observer (PIO) is considered. In order to design such an observer, the nonlinear system is transformed into an equivalent MM form. The Lyapunov method, expressed through linear matrix inequality (LMI) formulation, is used to describe the stability analysis and for the observer synthesis. An application to a model of wastewater treatment plant (WWTP) is considered and the performances of the proposed approach are illustrated through numerical results.

[1]  Gilles Mourot Modelling of ozone concentrations using a Takagi-Sugeno model , 1999 .

[2]  Benoît Chachuat,et al.  Réduction du modèle ASM 1 pour la commande optimale des petites stations d'épuration à boues activées , 2003 .

[3]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  B. Chachuat Methodologie d"Optimisation Dynamique et de Commande Optimale des Petites Stations d"Epuration a Boues Activees , 2001 .

[5]  B. Marx,et al.  Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[6]  S. Weijers Modelling, identification and control of activated sludge plants for nitrogen removal , 2000 .

[7]  Ilse Smets,et al.  A linear ASM1 based multi-model for activated sludge systems , 2006 .

[8]  José Ragot,et al.  Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Model , 2010 .

[9]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[10]  B. Chachuat,et al.  Reduction of the ASM1 Model for Optimal Control of Small-Size Activated Sludge Treatment Plants , 2003 .

[11]  Chun-Wen Li,et al.  Observing non-linear time-variable systems through a canonical form observer , 1986 .

[12]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[13]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[14]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[15]  M. Saif,et al.  Design of a TS Based Fuzzy Nonlinear Unknown Input Observer with Fault Diagnosis Applications , 2007, 2007 American Control Conference.

[16]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[17]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[18]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[19]  M. Darouach,et al.  A nonlinear observer design for an activated sludge wastewater treatment process , 2009 .

[20]  M. N. Pons,et al.  Benchmark for evaluating control strategies in wastewater treatment plants , 1999, 1999 European Control Conference (ECC).

[21]  B. Marx,et al.  Design of observers for TakagiߝSugeno descriptor systems with unknown inputs and application to fault diagnosis , 2007 .

[22]  Bernardino Castillo-Toledo,et al.  Takagi-Sugeno fuzzy observer for a switching bioprocess : sector nonlinearity approach , 2008 .

[23]  Saïd Mammar,et al.  Design of proportional-integral observer for unknown input descriptor systems , 2002, IEEE Trans. Autom. Control..

[24]  Chee Pin Tan,et al.  Sliding mode observers for fault detection and isolation , 2002 .

[25]  V. Utkin Variable structure systems with sliding modes , 1977 .

[26]  Hassan K. Khalil,et al.  High-gain observers in nonlinear feedback control , 2009, 2009 IEEE International Conference on Control and Automation.

[27]  Mohammed Chadli,et al.  On the design of observer for unknown inputs fuzzy models , 2008, Int. J. Autom. Control..

[28]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[29]  Max Donath,et al.  American Control Conference , 1993 .

[30]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[31]  J. E. Casaday Wastewater treatment systems. , 1992, Textile rental.

[32]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1996, IEEE Trans. Signal Process..

[33]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[34]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[35]  B. M. Arx Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis , 2008 .

[36]  Salvatore Monaco,et al.  Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete time , 2009, Autom..

[37]  M. Benrejeb,et al.  State and sensor faults estimation via a proportional integral observer , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[38]  Rainer Palm,et al.  Observers for Takagi-Sugeno fuzzy systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[39]  花田 茂久,et al.  Activated Sludge Model No.3 (ASM3) へのリン除去モジュールの導入とそのキャリブレーション方法の開発 , 2004 .

[40]  Jun Yoneyama,et al.  Hinfinity filtering for fuzzy systems with immeasurable premise variables: An uncertain system approach , 2009, Fuzzy Sets Syst..

[41]  R. B. Newell,et al.  A systematic approach for reducing complex biological wastewater treatment models , 1997 .