Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design

This paper investigates efficient maximum-likelihood (ML) decoding of low-density parity-check (LDPC) codes over erasure channels. A set of algorithms, referred to as pivoting algorithms, is developed. The aim is to limit the average number of pivots (or reference variables) from which all the other erased symbols are recovered iteratively. The suggested algorithms exhibit different trade-offs between complexity of the pivoting phase and average number of pivots. Moreover, a systematic procedure to design LDPC code ensembles for efficient ML decoding is proposed. Numerical results illustrate that the designed LDPC codes achieve a near-optimum performance (very close to the Singleton bound, at least down to a codeword error rate level 10-8) with an affordable decoding complexity. For one of the presented codes and algorithms, a software implementation has been developed which is capable to provide data rates above 1.5 Gbps on a commercial computing platform.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Faramarz Fekri,et al.  Results on the Improved Decoding Algorithm for Low-Density Parity-Check Codes Over the Binary Erasure Channel , 2007, IEEE Transactions on Information Theory.

[3]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[4]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[5]  Vincent Roca,et al.  Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes , 2008, RFC.

[6]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[7]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[8]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[9]  Luigi Rizzo,et al.  Effective erasure codes for reliable computer communication protocols , 1997, CCRV.

[10]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[11]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[12]  Faramarz Fekri,et al.  Results on Punctured Low-Density Parity-Check Codes and Improved Iterative Decoding Techniques , 2007, IEEE Transactions on Information Theory.

[13]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[14]  M. Cunche,et al.  Optimizing the error recovery capabilities of LDPC-staircase codes featuring a Gaussian elimination decoding scheme , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[15]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[16]  Marco Chiani,et al.  On Construction of Moderate-Length LDPC Codes over Correlated Erasure Channels , 2009, 2009 IEEE International Conference on Communications.

[17]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[18]  Valentin Savin,et al.  Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel , 2010, 2010 International Symposium On Information Theory & Its Applications.

[19]  Vinod M. Prabhakaran,et al.  Decentralized erasure codes for distributed networked storage , 2006, IEEE Transactions on Information Theory.

[20]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[21]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[22]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[23]  Marco Chiani,et al.  Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes , 2008, IEEE Transactions on Communications.

[24]  Marco Chiani,et al.  Channel Coding for Future Space Missions: New Requirements and Trends , 2007, Proceedings of the IEEE.

[25]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[26]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[27]  Sae-Young Chung,et al.  An efficient algorithm for ML decoding of raptor codes over the binary erasure channel , 2008, IEEE Communications Letters.

[28]  Hui Jin,et al.  Irregular Repeat – Accumulate Codes 1 , 2000 .

[29]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.