Interfering Residues Narrow the Spectrum of MLV Restriction by Human TRIM5α

TRIM5α is a restriction factor that limits infection of human cells by so-called N- but not B- or NB-tropic strains of murine leukemia virus (MLV). Here, we performed a mutation-based functional analysis of TRIM5α-mediated MLV restriction. Our results reveal that changes at tyrosine336 of human TRIM5α, within the variable region 1 of its C-terminal PRYSPRY domain, can expand its activity to B-MLV and to the NB-tropic Moloney MLV. Conversely, we demonstrate that the escape of MLV from restriction by wild-type or mutant forms of huTRIM5α can be achieved through interdependent changes at positions 82, 109, 110, and 117 of the viral capsid. Together, our results support a model in which TRIM5α-mediated retroviral restriction results from the direct binding of the antiviral PRYSPRY domain to the viral capsid, and can be prevented by interferences exerted by critical residues on either one of these two partners.

[1]  J. Sodroski,et al.  Complex determinants within the Moloney murine leukemia virus capsid modulate susceptibility of the virus to Fv1 and Ref1-mediated restriction. , 2007, Virology.

[2]  M. Emerman,et al.  Restriction of an Extinct Retrovirus by the Human TRIM5α Antiviral Protein , 2007, Science.

[3]  J. Trowsdale,et al.  Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function , 2007, Proceedings of the National Academy of Sciences.

[4]  M. Emerman,et al.  Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. , 2007, Science.

[5]  M. Yap,et al.  All Three Variable Regions of the TRIM5α B30.2 Domain Can Contribute to the Specificity of Retrovirus Restriction , 2006, Journal of Virology.

[6]  J. Sodroski,et al.  Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. , 2006, Virology.

[7]  Joseph Sodroski,et al.  Removal of Arginine 332 Allows Human TRIM5α To Bind Human Immunodeficiency Virus Capsids and To Restrict Infection , 2006, Journal of Virology.

[8]  J. Sodroski,et al.  Two Surface-Exposed Elements of the B30.2/SPRY Domain as Potency Determinants of N-Tropic Murine Leukemia Virus Restriction by Human TRIM5α , 2006, Journal of Virology.

[9]  G. Towers,et al.  Cyclophilin A Renders Human Immunodeficiency Virus Type 1 Sensitive to Old World Monkey but Not Human TRIM5α Antiviral Activity , 2006, Journal of Virology.

[10]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Oh,et al.  Structural and functional insights into the B30.2/SPRY domain , 2006, The EMBO journal.

[12]  J. Luban,et al.  Cyclophilin A and TRIM5α Independently Regulate Human Immunodeficiency Virus Type 1 Infectivity in Human Cells , 2006, Journal of Virology.

[13]  J. Tschopp,et al.  Structure of the PRYSPRY‐domain: Implications for autoinflammatory diseases , 2006, FEBS letters.

[14]  B. de Bono,et al.  Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? , 2005, Immunology.

[15]  A. Yang,et al.  Human Tripartite Motif 5α Domains Responsible for Retrovirus Restriction Activity and Specificity , 2005, Journal of Virology.

[16]  J. Luban,et al.  TRIM5α selectively binds a restriction-sensitive retroviral capsid , 2005, Retrovirology.

[17]  J. Sodroski,et al.  The B30.2(SPRY) Domain of the Retroviral Restriction Factor TRIM5α Exhibits Lineage-Specific Length and Sequence Variation in Primates , 2005, Journal of Virology.

[18]  M. Sitbon,et al.  Residues in the Murine Leukemia Virus Capsid That Differentially Govern Resistance to Mouse Fv1 and Human Ref1 Restrictions , 2005, Journal of Virology.

[19]  J. Sodroski,et al.  Retrovirus Restriction by TRIM5α Variants from Old World and New World Primates , 2005, Journal of Virology.

[20]  J. Sodroski,et al.  Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction , 2005, Journal of Virology.

[21]  Jonathan P. Stoye,et al.  A Single Amino Acid Change in the SPRY Domain of Human Trim5α Leads to HIV-1 Restriction , 2005, Current Biology.

[22]  J. Sodroski,et al.  Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. , 2005, Journal of virology.

[23]  P. Bieniasz Intrinsic immunity: a front-line defense against viral attack , 2004, Nature Immunology.

[24]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[25]  I. Taylor,et al.  High-resolution structure of a retroviral capsid hexameric amino-terminal domain , 2004, Nature.

[26]  M. Bock,et al.  Retroviral Capsid Determinants of Fv1 NB and NR Tropism , 2004, Journal of Virology.

[27]  J. Sodroski,et al.  TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Nisole,et al.  Trim5α protein restricts both HIV-1 and murine leukemia virus , 2004 .

[29]  G. Towers,et al.  The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Yang,et al.  Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[32]  S. Nisole,et al.  Trim5alpha protein restricts both HIV-1 and murine leukemia virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Goff,et al.  Characterization of Murine Leukemia Virus Restriction in Mammals , 2003 .

[34]  G. Towers,et al.  Identification of the Regions of Fv1 Necessary for Murine Leukemia Virus Restriction , 2001, Journal of Virology.

[35]  Alessandro Guffanti,et al.  The tripartite motif family identifies cell compartments , 2001, The EMBO journal.

[36]  Y. Takeuchi,et al.  A conserved mechanism of retrovirus restriction in mammals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Towers,et al.  Use of a Transient Assay for Studying the Genetic Determinants of Fv1 Restriction , 2000, Journal of Virology.

[38]  C. Kozak,et al.  Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. , 1996, Virology.

[39]  Jonathan P. Stoye,et al.  Positional cloning of the mouse retrovirus restriction gene Fvl , 1996, Nature.

[40]  Wesley I. Sundquist,et al.  Structure of the Amino-Terminal Core Domain of the HIV-1 Capsid Protein , 1996, Science.

[41]  P. Freemont,et al.  Novel topology of a zinc‐binding domain from a protein involved in regulating early Xenopus development. , 1995, The EMBO journal.

[42]  P. Freemont,et al.  A novel zinc finger coiled-coil domain in a family of nuclear proteins. , 1992, Trends in biochemical sciences.

[43]  R. Tennant,et al.  Nucleotide sequences of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses , 1983, Journal of virology.

[44]  P. Jolicoeur,et al.  Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses , 1983, Journal of virology.

[45]  E. Rassart,et al.  Effect of Fv-1 gene product on synthesis of linear and supercoiled viral DNA in cells infected with murine leukemia virus , 1980, Journal of virology.

[46]  F. Lilly Susceptibility to Two Strains of Friend Leukemia Virus in Mice , 1967, Science.