Pixel detectors ... where do we stand?

Abstract Pixel detectors have been the working horse for high resolution, high rate and high radiation particle tracking for the past 20 years. The field has spun off into imaging applications with equal uniqueness. Now the move is towards larger integration and fully monolithic devices with to be expected spin-off into imaging again. Many judices and prejudices that were around at times were overcome and surpassed. This paper attempts to give an account of the developments following a line of early prejudices and later insights.

[1]  Roberto Dinapoli,et al.  Characterization results of the JUNGFRAU full scale readout ASIC , 2016 .

[2]  Roberto Dinapoli,et al.  The adaptive gain integrating pixel detector , 2016 .

[3]  Maurice Garcia-Sciveres,et al.  A review of advances in pixel detectors for experiments with high rate and radiation , 2017, Reports on progress in physics. Physical Society.

[4]  G. Stefanini,et al.  A 1006 element hybrid silicon pixel detector with strobed binary output , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[5]  T. Stezelberger,et al.  The STAR MAPS-based PiXeL detector , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[6]  A. Rosa The ATLAS Insertable B-Layer: from construction to operation , 2016, 1610.01994.

[7]  James D. Plummer,et al.  First beam test results from a monolithic silicon pixel detector , 1993 .

[8]  W. De Boer,et al.  The DELPHI pixels , 1997 .

[9]  R. Horisberger,et al.  CMS barrel pixel detector overview , 2007, physics/0702182.

[10]  G. Potdevin,et al.  The adaptive gain integrating pixel detector (AGIPD): A detector for the European XFEL. development and status , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[11]  T. Bergauer,et al.  First thin AC-coupled silicon strip sensors on 8-inch wafers , 2016 .

[12]  Nicolo Cartiglia,et al.  Ultra-Fast Silicon Detectors , 2013, An Introduction to Ultra-Fast Silicon Detectors.

[13]  A. Junkes,et al.  Energy dependence of proton radiation damage in Si-sensors , 2014, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[14]  H. Sadrozinski,et al.  The 4D pixel challenge , 2016 .

[15]  Abraham Seiden,et al.  4D tracking with ultra-fast silicon detectors. , 2017, Reports on progress in physics. Physical Society.

[16]  Maurizio Boscardin,et al.  Design optimization of ultra-fast silicon detectors , 2015 .

[17]  R. Kass,et al.  Diamond detector technology, status and perspectives , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[18]  N. Wermes Depleted CMOS pixels for LHC proton–proton experiments , 2016 .

[19]  J. Jentzsch,et al.  Production and integration of the ATLAS Insertable B-Layer , 2018, 1803.00844.

[20]  R. Ballabriga,et al.  submitter : Asic developments for radiation imaging applications: The medipix and timepix family , 2018 .

[21]  D. Cauz,et al.  ATLAS pixel detector electronics and sensors , 2008 .

[22]  S. Saggini,et al.  FEAST2: A Radiation and Magnetic Field Tolerant Point-of-Load Buck DC/DC Converter , 2014, 2014 IEEE Radiation Effects Data Workshop (REDW).

[23]  Walter Snoeys,et al.  Monolithic CMOS sensors for high energy physics , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[24]  S. Grinstein,et al.  arXiv : Radiation hardness of small-pitch 3D pixel sensors up to HL-LHC fluences , 2017, 1707.01045.

[25]  R. Eusebi,et al.  Diamond detectors for high energy physics experiments , 2018 .

[26]  L. Gonella,et al.  Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line , 2017, 1702.04953.

[27]  B. Hiti,et al.  Charge-collection properties of irradiated depleted CMOS pixel test structures , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[28]  V. Fadeyev,et al.  Ultra-fast silicon detectors (UFSD) , 2016 .

[29]  Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG , 2014 .

[30]  Maurizio Boscardin,et al.  Tracking in 4 dimensions , 2017 .

[31]  J. Janssen,et al.  Test beam results of ATLAS DBM pCVD diamond detectors using a novel threshold tuning method , 2017 .

[32]  G. Betta,et al.  First production of new thin 3D sensors for HL-LHC at FBK , 2016, 1612.00638.

[33]  F. Cenna,et al.  Beam test results of a 16 ps timing system based on ultra-fast silicon detectors , 2016, 1608.08681.

[34]  P. Riedler,et al.  Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[35]  Ivan Peric,et al.  A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology ☆ , 2007 .

[36]  Claude Colledani,et al.  A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology , 2001 .

[37]  G. Contin The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance , 2016 .

[38]  M. Boscardin,et al.  Development of new 3D pixel sensors for phase 2 upgrades at LHC , 2015, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[39]  Magnus Mager,et al.  A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance , 2017 .

[40]  Yasin Ekinci,et al.  Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL , 2016 .

[41]  C. Kenney,et al.  3D — A proposed new architecture for solid-state radiation detectors , 1997 .

[42]  Nicolo Cartiglia,et al.  4-Dimensional Tracking with Ultra-Fast Silicon Detectors. , 2017, Reports on progress in physics. Physical Society.

[43]  G. Meddeler,et al.  A Readout Chip for a 64 x 64 Pixel Matrix with 15-bit Single Photon Counting* , 1997 .

[44]  Tilman Rohe,et al.  Pixel Detectors: From Fundamentals to Applications , 2006 .

[45]  M. Moll Displacement Damage in Silicon Detectors for High Energy Physics , 2018, IEEE Transactions on Nuclear Science.

[46]  M. Moll Recent advances in the development of radiation tolerant silicon detectors for the super-LHC , 2010 .

[47]  Gabriele Giacomini,et al.  3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production , 2013 .

[48]  Norbert Wermes,et al.  A counting pixel readout chip for imaging applications , 1998 .

[49]  R. Dinapoli,et al.  The ALICE Silicon Pixel Detector , 2003 .

[50]  S. Dube,et al.  The FE-I4 pixel readout integrated circuit , 2011 .

[51]  T. Stezelberger,et al.  A MAPS Based Micro-Vertex Detector for the STAR Experiment , 2015 .

[52]  Luca Fanucci,et al.  Recent progress of RD53 Collaboration towards next generation Pixel Read-Out Chip for HL-LHC , 2016 .

[53]  B. Schmitt,et al.  Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector , 2017 .

[54]  P. Riedler,et al.  Monolithic pixel development in 180 nm CMOS for the outer pixel layers in the ATLAS experiment , 2018 .

[55]  G. Darbo,et al.  Development of a new generation of 3D pixel sensors for HL-LHC , 2016, 1612.00624.

[56]  N. Wermes,et al.  A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process , 2014, 1412.3973.

[57]  E. Garutti,et al.  Energy-dependent proton damage in silicon , 2017 .

[58]  Matthias Rudolph Richter,et al.  Technical Design Report for the Upgrade of the ALICE Inner Tracking System , 2014 .