Surface patterning of polymeric membranes and its effect on antifouling characteristics

ABSTRACT Surface roughness of membranes is often perceived by many as a factor that promotes fouling during filtration, and thus is undesirable. Almost all liquid-based separation membranes display flat surfaces with an intrinsic surface roughness that is associated with the membrane manufacturing process. Recently, polymer ultrafiltration and thin film composite membranes containing regular, periodic surface patterns were fabricated using cost-effective lithographic methods. Here, we review the work to date on the fabrication and characterization of these patterned membranes with a focus on processing–structure–performance relationships. In addition, the antifouling performance of these membranes against model foulants including colloidal suspensions and protein solutions is also highlighted.

[1]  T. Matsuura,et al.  Surface modifications for antifouling membranes. , 2010, Chemical reviews.

[2]  Antonio Nanci,et al.  Surface Nanopatterning to Control Cell Growth , 2008 .

[3]  Kyle J. Alvine,et al.  Cubic Silsesquioxanes as a Green, High‐Performance Mold Material for Nanoimprint Lithography , 2011, Advanced materials.

[4]  A. Mayes,et al.  Antifouling Polymer Membranes with Subnanometer Size Selectivity , 2004 .

[5]  Xinjian Feng,et al.  Design and Creation of Superwetting/Antiwetting Surfaces , 2006 .

[6]  M. Ulbricht Advanced functional polymer membranes , 2006 .

[7]  K. Ahn,et al.  Particle deposition on the patterned membrane surface: Simulation and experiments , 2015 .

[8]  C. A. Smoldersb Diffusional phenomena in membrane separation processes , 2001 .

[9]  B. Freeman,et al.  Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes , 2010 .

[10]  I. G. Racz,et al.  Mass transfer in corrugated-plate membrane modules. II. Ultrafiltration experiments , 1989 .

[11]  M. J. van der WAAL MASS TRANSFER IN CORRUGATED-PLATE MEMBRANE MODULES. I. HYPERFILTRATION EXPERIMENTS* , 2000 .

[12]  Menachem Elimelech,et al.  Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives , 2007 .

[13]  J. Douglas,et al.  Polymer Viscoelasticity and Residual Stress Effects on Nanoimprint Lithography , 2007 .

[14]  Matthias Wessling,et al.  Phase Separation Micromolding—PSμM , 2003 .

[15]  A. Zydney,et al.  Effect of solution pH on protein transport through ultrafiltration membranes , 1999, Biotechnology and bioengineering.

[16]  Yifu Ding,et al.  Probing polymer deformation profiles at varying depths in nanoimprint lithography. , 2010, Nanotechnology.

[17]  Karlheinz Bock,et al.  Roll-to-roll hot embossing of microstructures , 2010, 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP).

[18]  Robert H. Davis,et al.  The behavior of suspensions and macromolecular solutions in crossflow microfiltration , 1994 .

[19]  R. G. Gutman,et al.  Membrane filtration : the technology of pressure-driven crossflow processes , 1987 .

[20]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[21]  John Pellegrino,et al.  Influence of sub-micron surface patterns on the deposition of model proteins during active filtration , 2013 .

[22]  M. Elimelech,et al.  Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes , 1997 .

[23]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[24]  Menachem Elimelech,et al.  Fouling of Reverse Osmosis Membranes by Aluminum Oxide Colloids , 1995 .

[25]  Jianliang Xiao,et al.  Influence of nanoimprint lithography on membrane structure and performance , 2015 .

[26]  Adam W Feinberg,et al.  Engineered antifouling microtopographies – effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva , 2007, Biofouling.

[27]  Kerry J. Howe,et al.  Fouling of microfiltration and ultrafiltration membranes by natural waters. , 2002, Environmental science & technology.

[28]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[29]  A. Greenberg,et al.  Critical flux of surface-patterned ultrafiltration membranes during cross-flow filtration of colloidal particles , 2014 .

[30]  Jaewoo Lee,et al.  Preparation and application of patterned membranes for wastewater treatment. , 2012, Environmental science & technology.

[31]  John Pellegrino,et al.  Fabrication and characterization of a surface-patterned thin film composite membrane , 2014 .

[32]  Jianqing Zhao,et al.  Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles , 2005 .

[33]  Gun Trägårdh,et al.  The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review , 1993 .

[34]  K. Ahn,et al.  Flow analysis and fouling on the patterned membrane surface , 2013 .

[35]  Mukul M. Sharma,et al.  Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) digl , 2011 .

[36]  Henri V. Jansen,et al.  Polymeric microsieves produced by phase separation micromolding , 2006 .

[37]  C. Soles,et al.  Exploring cellular contact guidance using gradient nanogratings. , 2010, Biomacromolecules.

[38]  A. Fane,et al.  Flux decline in protein ultrafiltration , 1984 .

[39]  ’ I.G.RACZ MASS TRANSFER IN CORRUGATED-PLATE MEMBRANE MODULES. II. ULTRAFILTRATION EXPERIMENTS* , 2000 .

[40]  Kew-Ho Lee,et al.  Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes , 2006 .

[41]  P Connolly,et al.  Cell guidance by ultrafine topography in vitro. , 1991, Journal of cell science.

[42]  M. Fagan,et al.  A novel process for continuous thermal embossing of large-area nanopatterns onto polymer films , 2009 .

[43]  Roshan Jeet Jee Jachuck,et al.  Crossflow microfiltration of water-in-oil emulsions using corrugated membranes , 2001 .

[44]  Matthias Wessling,et al.  Micropatterned polymer films by vapor-induced phase separation using permeable molds. , 2009, ACS applied materials & interfaces.

[45]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[46]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[47]  P. Aimar,et al.  Coagulation of colloids in a boundary layer during cross-flow filtration , 1998 .

[48]  Zhenhua Jiang,et al.  Mechanical properties and miscibility of polyethersulfone/phenoxy blends , 1996 .

[49]  A. Brennan,et al.  Non-toxic antifouling strategies , 2010 .

[50]  B. L. de Groot,et al.  Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF , 2001, Science.

[51]  John Pellegrino,et al.  Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes , 2013 .

[52]  K. Wallevik Spontaneous in vivo isomerization of bovine serum albumin as a determinant of its normal catabolism. , 1976, The Journal of clinical investigation.

[53]  Daniel G. Anderson,et al.  High throughput discovery of new fouling-resistant surfaces. , 2011, Journal of materials chemistry.

[54]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[55]  A. Greenberg,et al.  Glass transition behaviors of interfacially polymerized polyamide barrier layers on thin film composite membranes via nano-thermal analysis , 2011 .

[56]  Prasad,et al.  Entropically driven colloidal crystallization on patterned surfaces , 2000, Physical review letters.

[57]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[58]  A. Greenberg,et al.  Influence of substrate processing and interfacial polymerization conditions on the surface topography and permselective properties of surface-patterned thin-film composite membranes , 2016 .

[59]  E. Matthiasson The role of macromolecular adsorption in fouling of ultrafiltration membranes , 1983 .

[60]  Matthias Wessling,et al.  Fouling behavior of microstructured hollow fiber membranes in dead-end filtrations: critical flux determination and NMR imaging of particle deposition. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[61]  Yen Wah Tong,et al.  An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration , 2013 .

[62]  Kin Leong Pey,et al.  Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification , 2013, Nature Communications.

[63]  K. Ahn,et al.  Factors affecting pattern fidelity and performance of a patterned membrane , 2014 .

[64]  Eberhard Staude,et al.  Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions , 1997 .

[65]  Kyle J. Alvine,et al.  Nanoimprint Lithography and the Role of Viscoelasticity in the Generation of Residual Stress in Model Polystyrene Patterns , 2008 .

[66]  John Pellegrino,et al.  Correlation between barrier layer Tg and a thin-film composite polyamide membrane's performance: Effect of chlorine treatment , 2012 .

[67]  George M. Whitesides,et al.  Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria , 2001 .

[68]  Matthias Wessling,et al.  Phase separation micromolding: a new generic approach for microstructuring various materials. , 2005, Small.

[69]  C. Soles,et al.  Thermodynamic Underpinnings of Cell Alignment on Controlled Topographies , 2010, Advanced materials.

[70]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[71]  Bharat Bhushan,et al.  Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity , 2006 .

[72]  Robert W. Field,et al.  Critical and sustainable fluxes: Theory, experiments and applications , 2006 .

[73]  R. Klaassen,et al.  Mass transfer, fluid flow and membrane properties in flat and corrugated plate hyperfiltration modules , 1986 .

[74]  Adam W Feinberg,et al.  Engineered antifouling microtopographies – correlating wettability with cell attachment , 2006, Biofouling.

[75]  Pierre Aimar,et al.  A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions , 2002 .

[76]  Matthias Wessling,et al.  Microstructured hollow fibers for ultrafiltration , 2010 .

[77]  S. Wickramasinghe,et al.  Modification and characterization of ultrafiltration membranes for treatment of produced water , 2011 .

[78]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[79]  James S. Taylor,et al.  Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater , 2006 .

[80]  P. Aimar,et al.  Membrane— solute interactions: influence on pure solvent transfer during ultrafiltration , 1986 .

[81]  L. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[82]  Heechul Choi,et al.  Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. , 2011, Water research.

[83]  Glen McHale,et al.  Dual‐Scale Roughness Produces Unusually Water‐Repellent Surfaces , 2004 .

[84]  Stability and Surface Topography Evolution in Nanoimprinted Polymer Patterns under a Thermal Gradient , 2010 .

[85]  Kimberly L. Jones,et al.  Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength , 2000 .

[86]  K. Ahn,et al.  Three-dimensional hydraulic modeling of particle deposition on the patterned isopore membrane in crossflow microfiltration , 2015 .

[87]  S. Chou,et al.  Roller nanoimprint lithography , 1998 .

[88]  Eberhard Staude,et al.  Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes , 1999 .

[89]  A. Ismail,et al.  Effect of surface pattern formation on membrane fouling and its control in phase inversion process , 2013 .

[90]  S. Bhattacharjee,et al.  Effect of Membrane Surface Roughness on Colloid−Membrane DLVO Interactions , 2003 .

[91]  P. Ghosh,et al.  Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties , 2003 .

[92]  Chuyang Y. Tang,et al.  Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. , 2013, Environmental science & technology.

[93]  A. Karim,et al.  Evidence for internal stresses induced by nanoimprint lithography , 2006 .

[94]  K. Scott,et al.  Intensified membrane filtration with corrugated membranes , 2000 .

[95]  Menachem Elimelech,et al.  Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes , 2001 .

[96]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[97]  P. Wankat,et al.  Foam fractionation of globular proteins , 1990, Biotechnology and bioengineering.

[98]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[99]  K. Neoh,et al.  Synthesis, characterization and anti-fouling properties of poly(ethylene glycol) grafted poly(vinylidene fluoride) copolymer membranes , 2001 .

[100]  Lu Yan,et al.  EFFECT OF NANO SIZED AL2O3-PARTICLE ADDITION ON PVDF ULTRAFILTRATION MEMBRANE PERFORMANCE , 2006 .

[101]  Menachem Elimelech,et al.  Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control , 2002 .

[102]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[103]  K. Dam-Johansen,et al.  Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings , 2004 .

[104]  He-ping Zhao,et al.  Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. , 2013, Environmental science & technology.