Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells

The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics. High-power conversion efficiency can be realized in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarization; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionization of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current–voltage hysteresis observed in perovskite solar cells.

[1]  A. Zunger,et al.  Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. , 2003, Physical review letters.

[2]  Y. Kanemitsu,et al.  Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes , 2014 .

[3]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[4]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[5]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[6]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[7]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[8]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[9]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[10]  K. Butler,et al.  Prediction of electron energies in metal oxides. , 2014, Accounts of chemical research.

[11]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[12]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[13]  A. Walsh,et al.  Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. , 2011, Chemical Society reviews.

[14]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[15]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[16]  Yixin Zhao,et al.  Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. , 2014, Chemical communications.

[17]  Niels Egede Christensen,et al.  Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients , 2010 .

[18]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[19]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[20]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[21]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[24]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[25]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[26]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[27]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[28]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[29]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[30]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[31]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[32]  A. Zunger,et al.  Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .

[33]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[34]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[35]  J. V. Vleck On the Role of Dipole‐Dipole Coupling in Dielectric Media , 1937 .

[36]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[37]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[38]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[39]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[40]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[41]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[42]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[43]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[44]  R. Wyckoff The crystal structures of monomethyl ammonium chlorostannate and chloroplatinate , 1928 .

[45]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[46]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[47]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[48]  Roberto Dovesi,et al.  Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO 3 , 1997 .

[49]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[50]  J. Even,et al.  DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells , 2014 .

[51]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[52]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[53]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[54]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[57]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .