Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping.

There is substantial interest in using functional magnetic resonance imaging (fMRI) retinotopic mapping techniques to examine reorganization of the occipital cortex after vision loss in humans and nonhuman primates. However, previous reports suggest that standard phase encoding and the more recent population Receptive Field (pRF) techniques give biased estimates of retinotopic maps near the boundaries of retinal or cortical scotomas. Here we examine the sources of this bias and show how it can be minimized with a simple modification of the pRF method. In normally sighted subjects, we measured fMRI responses to a stimulus simulating a foveal scotoma; we found that unbiased retinotopic map estimates can be obtained in early visual areas, as long as the pRF fitting algorithm takes the scotoma into account and a randomized "multifocal" stimulus sequence is used.

[1]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[2]  Antony B. Morland,et al.  Population Receptive Field Dynamics in Human Visual Cortex , 2012, PloS one.

[3]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[4]  A. Brewer,et al.  FMRI of the Rod Scotoma: Cortical Projections, Filling-In and Insights into Plasticity , 2011 .

[5]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[6]  Satoru Miyauchi,et al.  Task-dependent V1 responses in human retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[7]  Brian A. Wandell,et al.  Plasticity and stability of visual field maps in adult primary visual cortex , 2009, Nature Reviews Neuroscience.

[8]  Nikos K. Logothetis,et al.  Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex , 2009, PloS one.

[9]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[10]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[11]  A. James,et al.  Quantitative multifocal fMRI shows active suppression in human V1 , 2008, Human brain mapping.

[12]  Daniel D. Dilks,et al.  Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss , 2008, Vision Research.

[13]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[14]  Daniel D. Dilks,et al.  Human Adult Cortical Reorganization and Consequent Visual Distortion , 2007, The Journal of Neuroscience.

[15]  Frank Tong,et al.  Filling-in of visual phantoms in the human brain , 2005, Nature Neuroscience.

[16]  Linda Henriksson,et al.  Multifocal fMRI mapping of visual cortical areas , 2005, NeuroImage.

[17]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[18]  Stephen V. David,et al.  Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response , 2004, NeuroImage.

[19]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.

[20]  Paul Schrater,et al.  BOLD fMRI and psychophysical measurements of contrast response to broadband images , 2004, Vision Research.

[21]  David J Heeger,et al.  Response Suppression in V1 Agrees with Psychophysics of Surround Masking , 2003, The Journal of Neuroscience.

[22]  Herbert Jägle,et al.  Reorganization of human cortical maps caused by inherited photoreceptor abnormalities , 2002, Nature Neuroscience.

[23]  Rainer Goebel,et al.  An Efficient Algorithm for Topologically Correct Segmentation of the Cortical Sheet in Anatomical MR Volumes , 2001, NeuroImage.

[24]  B. Wandell,et al.  Abnormal retinotopic representations in human visual cortex revealed by fMRI. , 2001, Acta psychologica.

[25]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[26]  B. Wandell,et al.  Topographic Organization of Human Visual Areas in the Absence of Input from Primary Cortex , 1999, The Journal of Neuroscience.

[27]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[28]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[29]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[30]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[31]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.