P-Adic Analog of Navier-Stokes Equations: Dynamics of Fluid's Flow in Percolation Networks (from Discrete Dynamics with Hierarchic Interactions to Continuous Universal Scaling Model)
暂无分享,去创建一个
Andrei Khrennikov | Klaudia Oleschko | María de Jesús Correa López | A. Khrennikov | K. Oleschko | María de Jesús Correa López
[1] Fionn Murtagh,et al. On Ultrametric Algorithmic Information , 2007, Comput. J..
[2] Fionn Murtagh,et al. The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking , 2013 .
[3] S Musacchio,et al. Shell model for quasi-two-dimensional turbulence. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Michio Yamada,et al. Asymptotic formulas for the Lyapunov spectrum of fully developed shell model turbulence , 1996 .
[5] Gabor Korvin,et al. Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Anatoly N. Kochubei,et al. Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .
[7] K. Oleschko,et al. Probability density function: A tool for simultaneous monitoring of pore/solid roughness and moisture content , 2010 .
[8] Andrei Khrennikov,et al. Modeling Fluid's Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks , 2016, Entropy.
[9] S. V. Kozyrev,et al. Dynamics on rugged landscapes of energy and ultrametric diffusion , 2010 .
[10] Fionn Murtagh,et al. Fast, Linear Time Hierarchical Clustering using the Baire Metric , 2011, J. Classif..
[11] W. A. Zuniga-Galindo. Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .
[12] Raffaele Tripiccione,et al. (1+1)-dimensional turbulence , 1996, chao-dyn/9610012.
[13] S. V. Kozyrev,et al. APPLICATION OF p-ADIC ANALYSIS TO TIME SERIES , 2013, 1312.3878.
[14] B. R. Tufts,et al. Evidence for a subsurface ocean on Europa , 1998, Nature.
[15] W. A. Zúñiga-Galindo. Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .
[16] K. Oleschko,et al. Weathering: Toward a Fractal Quantifying , 2004 .
[17] Andrei Khrennikov,et al. Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .
[18] W. A. Zúñiga-Galindo,et al. p-Adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes , 2013, 1312.2476.
[19] Kerr,et al. Helical shell models for three-dimensional turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] Andrei Khrennikov,et al. Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .
[21] Сергей Владимирович Козырев,et al. Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .
[22] Sergio Albeverio,et al. The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .
[23] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[24] Michio Yamada,et al. Chaotic properties of a fully developed model turbulence , 2007 .
[25] Anatoly N. Kochubei,et al. Radial Solutions of Non-Archimedean Pseudo-Differential Equations , 2013, 1302.4850.
[26] Michio Yamada,et al. Lyapunov Spectrum of a Chaotic Model of Three-Dimensional Turbulence , 1987 .
[27] Michelle M. Selvans. Planetary science: Plate tectonics on ice , 2014 .
[28] Fionn Murtagh,et al. Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, formal concept analysis, and precision of data measurement , 2011, 1111.6254.
[29] Leo P. Kadanoff. A Model of Turbulence , 1995 .