Effects of endogenous Al and Zn phases on mechanical properties of Sn58Bi eutectic alloy

[1]  Xiaolei Wu,et al.  Heterogeneous materials: a new class of materials with unprecedented mechanical properties , 2017, Heterostructured Materials.

[2]  Y. Wang,et al.  Improvement of microstructure and tensile properties of Sn–Bi–Ag alloy by heterogeneous nucleation of β-Sn on Ag3Sn , 2020 .

[3]  H. Song,et al.  AlGaN-based UV-C distributed Bragg reflector with a λ-cavity designed for an external cavity structure electron-beam-pumped VCSEL , 2020 .

[4]  H. Nishikawa,et al.  Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology , 2019, Materials & Design.

[5]  H. Nishikawa,et al.  The newly developed Sn–Bi–Zn alloy with a low melting point, improved ductility, and high ultimate tensile strength , 2019, Materialia.

[6]  Yaocheng Zhang,et al.  Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling , 2019, Materials Characterization.

[7]  H. Nishikawa,et al.  Effects of Ti addition on the microstructure, mechanical properties and electrical resistivity of eutectic Sn58Bi alloy , 2019, Materials Science and Engineering: A.

[8]  T. Guo,et al.  Realization of an efficient electron source by ultraviolet-light-assisted field emission from a one-dimensional ZnO nanorods/n-GaN heterostructure photoconductive detector. , 2019, Nanoscale.

[9]  H. Nishikawa,et al.  Improvement in the mechanical properties of eutectic Sn58Bi alloy by 0.5 and 1 wt% Zn addition before and after thermal aging , 2018, Journal of Alloys and Compounds.

[10]  S. Ji,et al.  Effect of Bi on the microstructure and mechanical properties of Sn-Zn alloys processed by rolling , 2018 .

[11]  Tongmin Wang,et al.  Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys , 2017 .

[12]  W. Zhou,et al.  Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys , 2017 .

[13]  Feng Xue,et al.  Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates , 2016 .

[14]  Adnan Akkurt,et al.  The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy , 2015 .

[15]  Shaohua Chen,et al.  A physical model revealing strong strain hardening in nano-grained metals induced by grain size gradient structure , 2015 .

[16]  Liangchi Zhang,et al.  Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder , 2015, Journal of Materials Science: Materials in Electronics.

[17]  Jun Shen,et al.  Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn–Bi-based solder alloys , 2014 .

[18]  Yi Liu,et al.  Microstructure and shear strength of Sn37Pb/Cu solder joints subjected to isothermal aging , 2014, Microelectron. Reliab..

[19]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[20]  A. Loureiro,et al.  The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering , 2014 .

[21]  Jian Lu,et al.  Grain size gradient length scale in ballistic properties optimization of functionally graded nanocrystalline steel plates , 2013 .

[22]  F. Xue,et al.  Microstructure, Thermal and Wetting Properties of Sn-Bi-Zn Lead-Free Solder , 2013, Journal of Electronic Materials.

[23]  Jing Liu,et al.  Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area , 2013 .

[24]  T. Langdon,et al.  On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion , 2013 .

[25]  Zhong Chen,et al.  Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation , 2012 .

[26]  T. Chuang,et al.  Effect of La addition on the interfacial intermetallics and bonding strengths of Sn–58Bi solder joints with Au/Ni/Cu pads , 2010 .

[27]  A. Dasgupta,et al.  Harmonic and Random Vibration Durability of SAC305 and Sn37Pb Solder Alloys , 2010, IEEE Transactions on Components and Packaging Technologies.

[28]  N. Soneda,et al.  First-principles calculations of vacancy–solute element interactions in body-centered cubic iron , 2009 .

[29]  Z. Zhang,et al.  Tensile and compressive deformation behaviors of commercially pure Al processed by equal-channel angular pressing with different dies , 2008 .

[30]  Sinn-wen Chen,et al.  Thermodynamic properties and phase equilibria of Sn–Bi–Zn ternary alloys , 2008 .

[31]  Jinhuai Liu,et al.  Tensile deformation and fracture behaviors of high purity polycrystalline zinc , 2008 .

[32]  J. Etzkorn,et al.  Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering , 2008 .

[33]  Y. Lei,et al.  Effects of Trace Amounts of Rare Earth Additions on Microstructure and Properties of Sn-Bi-Based Solder Alloy , 2008 .

[34]  D. Soares,et al.  Thermodynamic assessment of the Bi–Sn–Zn System , 2007 .

[35]  M. Inoue,et al.  Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder , 2007 .

[36]  G. Said,et al.  The relationship between brittle fracture temperature and stress concentration in bcc steels , 2004 .

[37]  J. Gardea-Torresdey,et al.  Use of hop (Humulus lupulus) agricultural by-products for the reduction of aqueous lead(II) environmental health hazards. , 2002, Journal of hazardous materials.

[38]  Hongyuan Chen,et al.  Photochemical synthesis and characterization of PbSe nanoparticles , 2001 .

[39]  Z. P. Wang,et al.  Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy , 1999 .

[40]  M. Kakihana,et al.  Internal distortion in ZrO2–CeO2 solid solutions: Neutron and high-resolution synchrotron x-ray diffraction study , 1998 .

[41]  Kwang-Lung Lin,et al.  The microstructures of the Sn-Zn-Al solder alloys , 1998 .

[42]  C. Davis,et al.  Modeling solid solution strengthening in nickel alloys , 1997 .

[43]  D. R. Jones,et al.  Failure by liquid metal induced embrittlement , 1994 .

[44]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[45]  S. Lynch Liquid-metal embrittlement in an Al 6%Zn3%Mg alloy , 1981 .

[46]  W. A. Miller,et al.  The temperature dependence of the mechanical properties of aluminum alloys containing low-melting-point inclusions , 1980 .

[47]  M. H. Kamdar The occurrence of liquid‐metal embrittlement , 1971 .

[48]  D. Schiferl,et al.  The crystal structure of arsenic at 4.2, 78 and 299°K , 1969 .

[49]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[50]  J. A. Lee,et al.  The Lattice Spacings of Binary Tin-Rich Alloys , 1954 .