A Novel Design Approach For Grasping Broad Characteristics Of Magnetic Shielding Problems

This paper presents a novel design approach composed of two sequential processes for 3D magnetic shielding problems, which results in the global optimum solution in a shorter time. The feature of the proposed approach is the adoption of the specific boundary element with permeability of infinity. Assuming the permeability of infinity enables us to regard the thickness of ferromagnetic shields as infinitesimal, and thus to simplify the investigated model adequately in numerical analysis. This reduces the number of unknown variables and saves us a large amount of CPU-time for grasping the broad characteristics of the model. Some numerical results that demonstrate the validity of the proposed approach are also presented.