Analysis of Some Errors in the Measurement of Oxygen Extraction and Oxygen Consumption by the Equilibrium Inhalation Method

Some sources of error in the equilibrium inhalation method for the measurement of oxygen extraction fraction and CMRO2 by positron emission computed tomography scanning have been evaluated by computer simulation. Emphasis has been placed on errors that have not been thoroughly studied in past work. These include effects of random statistical errors, systematic errors in arterial blood radioactivity concentrations, and errors due to perturbations of the equilibrium state, to tissue inhomogeneity, and to subject motion.

[1]  R J Wise,et al.  Correction for the Presence of Intravascular Oxygen-15 in the Steady-State Technique for Measuring Regional Oxygen Extraction Ratio in the Brain: 2. Results in Normal Subjects and Brain Tumour and Stroke Patients , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  A A Lammertsma,et al.  A Statistical Study of the Steady State Technique for Measuring Regional Cerebral Blood Flow and Oxygen Utilisation Using 15O , 1982, Journal of computer assisted tomography.

[3]  Positron imaging of the normal brain--regional patterns of cerebral blood flow and metabolism. , 1980, Transactions of the American Neurological Association.

[4]  D Comar,et al.  Reversal of Focal "Misery‐Perfusion Syndrome" By Extra‐Intracranial Arterial Bypass in Hemodynamic Cerebral Ischemia: A Case Study with 15O Positron Emission Tomography , 1981, Stroke.

[5]  N. Alpert,et al.  Positron imaging in ischemic stroke disease , 1984, Annals of neurology.

[6]  B. Siesjö A New Journal and a New Society—Why? , 1981 .

[7]  T Jones,et al.  Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. , 1983, Brain : a journal of neurology.

[8]  R. Huesman A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. , 1984, Physics in medicine and biology.

[9]  M. Reivich,et al.  Error Analysis for the Determination of Cerebral Blood Flow with the Continuous Inhalation of 15O‐Labeled Carbon Dioxide and Positron Emission Tomography , 1982, Journal of computer assisted tomography.

[10]  C Crouzel,et al.  Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication. , 1982, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  A A Lammertsma,et al.  A Theoretical Study of the Steady‐State Model for Measuring Regional Cerebral Blood Flow and Oxygen Utilisation Using Oxygen‐15 , 1981, Journal of computer assisted tomography.

[12]  M. Raichle,et al.  Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  M E Raichle,et al.  Effect of Tissue Heterogeneity on the Measurement of Cerebral Blood Flow with the Equilibrium C15O2 Inhalation Technique , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  M. Ter-pogossian,et al.  The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. , 1976, The British journal of radiology.

[15]  J C Mazziotta,et al.  Anatomical localization schemes for use in positron computed tomography using a specially designed headholder. , 1982, Journal of computer assisted tomography.

[16]  G. L. Brownell,et al.  Estimation of the Local Statistical Noise in Emission Computed Tomography , 1982, IEEE Transactions on Medical Imaging.

[17]  G L Brownell,et al.  Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. , 1981, Archives of neurology.

[18]  A A Lammertsma,et al.  Correction for the Presence of Intravascular Oxygen-15 in the Steady-State Technique for Measuring Regional Oxygen Extraction Ratio in the Brain: 1. Description of the Method , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  R. Frackowiak,et al.  Quantitative Measurement of Regional Cerebral Blood Flow and Oxygen Metabolism in Man Using 15O and Positron Emission Tomography: Theory, Procedure, and Normal Values , 1980, Journal of computer assisted tomography.

[20]  N. Alpert,et al.  Model for regional cerebral oxygen distrubition during continuous inhalation of /sup 15/O/sub 2/, C/sup 15/O, and C/sup 15/O/sub 2/ , 1978 .

[21]  J. Baron,et al.  Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. , 1983, Archives of neurology.

[22]  Richard S. J. Frackowiak,et al.  Cerebral Oxygen Metabolism and Blood Flow in Human Cerebral Ischemic Infarction , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.