Shear-Wave Splitting in the Alpine Region

<p>To constrain seismic anisotropy under and around the Alps in Europe, we study SKS shear-wave splitting from the region densely covered by the AlpArray seismic network. We apply a technique based on measuring the splitting intensity, constraining well both the fast orientation and the splitting delay. 4 years of teleseismic earthquake data were processed automatically (without human intervention), from 724 temporary and permanent broadband stations of the AlpArray deployment including ocean-bottom seismometers. We have obtained an objective image of anisotropic structure in and around the Alpine region, at a spatial resolution that is unprecedented. As in earlier studies, we observe a coherent rotation of fast axes in the western part of the Alpine chain, and a region of homogeneous fast orientation in the central Alps. &#160;The spatial variation of splitting delay times is particularly interesting. On one hand, there is a clear positive correlation with Alpine topography, suggesting that part of the seismic anisotropy (deformation) is caused by the Alpine orogeny. On the other hand, anisotropic strength around the mountain chain shows a distinct contrast between western and eastern Alps. This difference is best explained by the more active mantle flow around the Western Alps. We discuss earlier concepts of Alpine geodynamics in the light of these new observational constraints.&#160;</p>

A. Strollo | D. Lange | H. Kopp | D. Giardini | D. Spallarossa | J. Clinton | S. Wiemer | A. Deschamps | M. Régnier | X. Martin | C. Chiarabba | G. Bokelmann | I. Allegretti | T. Meier | M. Massa | C. Doubre | A. Govoni | I. Molinari | A. Cavaliere | F. Mazzarini | F. Fuchs | J. Wassermann | P. Jedlicka | C. Maron | E. Kissling | E. D’Alema | S. Pondrelli | S. Salimbeni | A. Paul | F. Tilmann | J. Dessa | D. Piccinini | L. Vecsey | J. Plomerová | C. Thomas | A. Dannowski | Z. Wéber | B. Süle | D. Pesaresi | C. Piromallo | J. Chéze | K. Spieker | M. Korn | R. Abreu | Maria-Theresia Apoloner | M. Thorwart | S. Schippkus | D. Schulte‐Kortnack | G. Hetényi | M. Reiss | L. Margheriti | M. Živčič | M. Moretti | M. Herak | D. Herak | J. Stipčević | A. Nardi | I. Dasović | J. Ritter | G. Rümpker | M. Capello | M. Santulin | S. Danesi | G. Szanyi | Z. Gráczer | E. Szűcs | Yan Jia | C. Aubert | V. Wesztergom | I. Bianchi | C. Weidle | S. Lovati | W. Friederich | C. Péquegnat | D. Wolyniec | S. Solarino | M. Vallocchia | B. Heit | G. Hein | P. Kolínský | S. Besançon | M. Bés de Berc | D. Brunel | Martina Čarman | G. Cougoulat | Wayne C. Crawford | L. Cristiano | T. Czifra | R. Daniel | S. Egdorf | T. Fiket | K. Fischer | S. Funke | G. Gröschl | S. Heimers | Johann Huber | D. Jarić | H. Jund | Stefan Klingen | Bernhard Klotz | J. Kotek | L. Kühne | Krešo Kuk | J. Loos | D. Malengros | L. Métral | J. Pahor | D. Petersen | T. Plenefisch | S. Prevolnik | R. Racine | W. Scherer | V. Šipka | S. Ueding | René Voigt | G. Weyland | F. Wolf | T. Zieke | Helena Žlebčíková | AlpArray Working Group

[1]  N. Piana Agostinetti,et al.  Modeling of Anisotropy in the Lithosphere and Asthenosphere for Real Earth Cases: A Critical Assessment of the Impact on SKS Measurements , 2020, Journal of Geophysical Research: Solid Earth.

[2]  G. Rümpker,et al.  The mantle flow below the Alps from isolated mantle anisotropy based on differential Ps – XKS Splitting , 2020 .

[3]  G. Bokelmann,et al.  Flow plane orientation in the upper mantle under the Western/Central United States from SKS shear-wave splitting observations , 2020 .

[4]  G. Bokelmann,et al.  Mantle flow under the Central Alps: Constraints from non-vertical SKS shear-wave splitting , 2020 .

[5]  S. Pondrelli,et al.  Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations , 2020, Solid Earth.

[6]  G. Houseman,et al.  Upper mantle deformation signatures of craton–orogen interaction in the Carpathian–Pannonian region from SKS anisotropy analysis , 2020, Geophysical Journal International.

[7]  Liang Zhao,et al.  Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography , 2018 .

[8]  H. Kopp,et al.  The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen , 2018, Surveys in Geophysics.

[9]  T. Meier,et al.  Surface Wave Tomography of the Alps Using Ambient‐Noise and Earthquake Phase Velocity Measurements , 2018 .

[10]  Yixian Xu,et al.  P wave anisotropic tomography of the Alps , 2017 .

[11]  T. Dumont,et al.  Continuity of the Alpine slab unraveled by high‐resolution P wave tomography , 2016 .

[12]  G. Bokelmann,et al.  AlpArray in Austria and Slovakia: technical realization, site description and noise characterization , 2016 .

[13]  G. Bokelmann,et al.  Journal of Geophysical Research : Solid Earth Deformation in the asthenospheric mantle beneath the Carpathian-Pannonian Region , 2016 .

[14]  G. Bokelmann,et al.  Site selection for a countrywide temporary network in Austria: noise analysis and preliminary performance , 2015 .

[15]  F. Schlunegger,et al.  Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin , 2015, Nature Communications.

[16]  G. Bokelmann,et al.  Slab detachment under the Eastern Alps seen by seismic anisotropy , 2015, Earth and planetary science letters.

[17]  L. Royden,et al.  Mantle dynamics in the Mediterranean , 2014 .

[18]  David Reed Data smart: Using data science to transform information into insight , 2014 .

[19]  G. Masters,et al.  A uniformly processed data set of SKS shear wave splitting measurements: A global investigation of upper mantle anisotropy beneath seismic stations , 2014 .

[20]  M. Handy,et al.  Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion , 2014, International Journal of Earth Sciences.

[21]  G. Bokelmann,et al.  Seismic anisotropy and large-scale deformation of the Eastern Alps , 2013 .

[22]  S. Pondrelli,et al.  Hints on the deformation penetration induced by subductions and collision processes: Seismic anisotropy beneath the Adria region (Central Mediterranean) , 2013 .

[23]  E. Brückl,et al.  Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model , 2011 .

[24]  E. Brückl,et al.  Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe , 2011 .

[25]  G. Barruol,et al.  Belt-parallel mantle flow beneath a halted continental collision: The Western Alps , 2011 .

[26]  Stefan M. Schmid,et al.  Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps , 2010 .

[27]  T. Becker,et al.  Mantle dynamics and seismic anisotropy , 2010 .

[28]  Lion Krischer,et al.  ObsPy: A Python Toolbox for Seismology , 2010 .

[29]  S. Chevrot,et al.  How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy , 2010 .

[30]  S. Cloetingh,et al.  P‐ and S‐velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data , 2009 .

[31]  Paul G. Silver,et al.  Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions , 2009 .

[32]  L. Vecsey,et al.  Shear-wave splitting measurements — Problems and solutions , 2008 .

[33]  Jeffrey Park,et al.  SKS splitting measurements beneath Northern Apennines region: A case of oblique trench-retreat , 2008 .

[34]  Christophe Zaroli,et al.  SplitLab: A shear-wave splitting environment in Matlab , 2008, Comput. Geosci..

[35]  R. Hilst,et al.  Asthenospheric flow and origin of volcanism in the Baikal Rift area , 2006 .

[36]  Jeffrey Park,et al.  Seismic anisotropy beneath the Northern Apennines (Italy): Mantle flow or lithosphere fabric? , 2006 .

[37]  S. Chevrot A New Method for High Resolution Imaging of Upper Mantle Anisotropy , 2006 .

[38]  J. Kummerow,et al.  Shear wave splitting in the Eastern Alps observed at the TRANSALP network , 2006 .

[39]  G. Barruol,et al.  Seismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantle , 2006 .

[40]  S. Schmid,et al.  Lithosphere structure and tectonic evolution of the Alpine arc: new evidence from high-resolution teleseismic tomography , 2006, Geological Society, London, Memoirs.

[41]  G. Barruol,et al.  Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates Neogene asthenospheric flow induced by Apenninic slab roll-back and deflected by the deep Alpine roots , 2004 .

[42]  E. Lüschen,et al.  Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling , 2004 .

[43]  S. Schmid,et al.  Tectonic map and overall architecture of the Alpine orogen , 2004 .

[44]  M. van der Baan,et al.  Automation of Shear-Wave Splitting Measurements using Cluster Analysis , 2004 .

[45]  J. Nocquet,et al.  Evidence for a post-3.16-Ma change in Nubia Eurasia North America plate motions ? , 2003 .

[46]  R. Lippitsch,et al.  Upper mantle structure beneath the Alpine orogen from high‐resolution teleseismic tomography , 2003 .

[47]  G. Stampfli,et al.  Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean Basin connection , 2001 .

[48]  L. Jolivet,et al.  Mediterranean extension and the Africa‐Eurasia collision , 2000 .

[49]  S. Chevrot Multichannel analysis of shear wave splitting , 2000 .

[50]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[51]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[52]  M. Cocco,et al.  Seismic anisotropy beneath the Northern Apennines (Italy) and its tectonic implications , 1996 .

[53]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[54]  R. Snieder,et al.  Small-scale sublithospheric continental mantle deformation: constraints from SKS splitting observations , 1995 .

[55]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[56]  P. Bormann,et al.  Teleseismic shear-wave splitting and deformations in Central Europe , 1993 .

[57]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[58]  Lothar Ratschbacher,et al.  Lateral extrusion in the eastern Alps, PArt 2: Structural analysis , 1991 .

[59]  J. Dewey,et al.  Kinematics of the western Mediterranean , 1989, Geological Society, London, Special Publications.

[60]  Paul G. Silver,et al.  Implications for continental structure and evolution from seismic anisotropy , 1988, Nature.

[61]  R. Gutdeutsch,et al.  Seismicity and Neotectonics of the East Alpine-Carpathian and Pannonian Area: Chapter 15 , 1988 .

[62]  L. Royden,et al.  The Pannonian Basin : a study in basin evolution , 1988 .

[63]  Masataka Ando,et al.  Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone , 1987 .

[64]  C. H. Chapman,et al.  The computation of seismic travel times , 1983 .

[65]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[66]  E. Robinson,et al.  PRINCIPLES OF DIGITAL WIENER FILTERING , 1967 .

[67]  R. Trümpy PALEOTECTONIC EVOLUTION OF THE CENTRAL AND WESTERN ALPS , 1960 .