Spectral emission properties of a nitrogen-doped diamond (001) photocathode: Hot electron transport and transverse momentum filtering

The electron emission properties of a single-crystal nitrogen-doped diamond(001) photocathode inserted in a 10kV DC photoelectron gun are determined using a tunable (235-410nm) ultraviolet laser radiation source for photoemission from both the back nitrogen-doped substrate face and the front homo-epitaxially grown and undoped diamond crystal face. The measured spectral trends of the mean transverse energy (MTE) and quantum efficiency (QE) of the emitted electrons are both anomalous and non-monotonic, but are shown to be consistent with (i) the known physics of electron photoexcitation from the nitrogen substitution states into the conduction bands of diamond, (ii) the energy position and dispersion characteristics of the conduction bands of diamond in the (001) emission direction, (iii) the effective electron affinity of the crystal faces, (iv) the strong electron-(optical)phonon coupling in diamond, and (v) the associated hot electron transport dynamics under energy equipartition with the optical phonons. Notably, the observed hot electron emission is shown to be restricted parallel to the photocathode surface by the low transverse effective masses of the emitting band states - a transverse momentum filtering effect.

[1]  W. Schroeder,et al.  Sub-threshold ultrafast one-photon photoemission from a Cu(111) photocathode , 2022, AIP Advances.

[2]  C. Cocchi,et al.  Exploring the Cs-Te phase space via high-throughput density-functional theory calculations beyond the generalized-gradient approximation , 2021, The Journal of Chemical Physics.

[3]  Evan R. Antoniuk,et al.  Novel Ultrabright and Air‐Stable Photocathodes Discovered from Machine Learning and Density Functional Theory Driven Screening , 2021, Advanced materials.

[4]  J. Maxson,et al.  Beam brightness from Cs–Te near the photoemission threshold , 2021 .

[5]  C. Cocchi,et al.  Electronic structure of cesium-based photocathode materials from density functional theory: performance of PBE, SCAN, and HSE06 functionals , 2021, Electronic Structure.

[6]  S. Baryshev,et al.  Evidence for Anti-Dowell-Schmerge Process in Photoemission from Diamond , 2020, 2011.00722.

[7]  J. Butler,et al.  Nitrogen-doped CVD diamond: Nitrogen concentration, color and internal stress , 2020 .

[8]  T. Arias,et al.  Ultracold Electrons via Near-Threshold Photoemission from Single-Crystal Cu(100). , 2020, Physical review letters.

[9]  P. Riley,et al.  Spectral characterization of a Rh(110) photocathode: Band structure interpretation , 2019, AIP Advances.

[10]  W. Schroeder,et al.  Evaluation of photocathode emission properties in an electron gun: one-step photoemission from bulk band to vacuum states , 2019, New Journal of Physics.

[11]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[12]  I. Bazarov,et al.  Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs2Te coating , 2018 .

[13]  H. Padmore,et al.  One-step model of photoemission from single-crystal surfaces , 2016, 1612.07452.

[14]  J. Asmussen,et al.  Growth strategies for large and high quality single crystal diamond substrates , 2015 .

[15]  H. Shibata,et al.  Femtosecond Time-Resolved Electron Microscopy , 2015 .

[16]  H. Padmore,et al.  Thermal limit to the intrinsic emittance from metal photocathodes , 2015 .

[17]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[18]  L. Ram-Mohan,et al.  Electron–phonon coupling and associated scattering rates in diamond , 2015 .

[19]  P. Musumeci,et al.  Single-shot MeV transmission electron microscopy with picosecond temporal resolution , 2014, 1405.5969.

[20]  R. Miller,et al.  Mapping atomic motions with ultrabright electrons: the chemists' gedanken experiment enters the lab frame. , 2014, Annual review of physical chemistry.

[21]  A. Nicholls,et al.  Intrinsic electron beam emittance from metal photocathodes: the effect of the electron effective mass. , 2013, Physical review letters.

[22]  Tuo Li,et al.  Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes , 2012 .

[23]  M. Berz,et al.  Space charge effects in ultrafast electron diffraction and imaging , 2012 .

[24]  R. Nemanich,et al.  Combined visible light photo-emission and low temperature thermionic emission from nitrogen doped diamond films , 2011 .

[25]  R. Ahuja,et al.  Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation , 2011 .

[26]  Jinfeng Yang,et al.  Transmission-electron diffraction by MeV electron pulses , 2011 .

[27]  J. Smedley,et al.  Properties of hydrogen terminated diamond as a photocathode. , 2011, Physical review letters.

[28]  S. Louie,et al.  Electron-phonon renormalization of the direct band gap of diamond. , 2010, Physical review letters.

[29]  T. Grotjohn,et al.  Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density , 2010 .

[30]  Howard A. Padmore,et al.  Cathode R&D for future light sources , 2010 .

[31]  P. Musumeci,et al.  High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector. , 2010, The Review of scientific instruments.

[32]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  R. Miller,et al.  Electronic acceleration of atomic motions and disordering in bismuth , 2009, Nature.

[34]  John Schmerge,et al.  The Quantum Efficiency and Thermal Emittance of Metal Photocathodes , 2009 .

[35]  P Emma,et al.  Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source. , 2009, Physical review letters.

[36]  W. Schroeder,et al.  High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator. , 2008, Optics express.

[37]  Zhirong Huang,et al.  A review of x-ray free-electron laser theory. , 2007 .

[38]  J. Hajdu,et al.  Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays , 2007, Science.

[39]  Tsumoru Shintake,et al.  CeB 6 electron gun for low-emittance injector , 2007 .

[40]  H. Petek,et al.  Coherent optical phonons in diamond , 2006 .

[41]  Jerome B. Hastings,et al.  Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams , 2006 .

[42]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[43]  F. Hartemann,et al.  Single-shot dynamic transmission electron microscopy , 2006 .

[44]  T. Matsuyama,et al.  Highly polarized electrons from GaAs–GaAsP and InGaAs–AlGaAs strained-layer superlattice photocathodes , 2005 .

[45]  S. Yamasaki,et al.  Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces , 2005 .

[46]  Jason R. Dwyer,et al.  An Atomic-Level View of Melting Using Femtosecond Electron Diffraction , 2003, Science.

[47]  M. Vaněček,et al.  Photoionization cross-section of dominant defects in CVD diamond , 1999 .

[48]  L. Schlapbach,et al.  Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy , 1998 .

[49]  Jingbiao Cui,et al.  Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface , 1998 .

[50]  M. J. Rutter,et al.  Ab initio calculation of electron affinities of diamond surfaces , 1998 .

[51]  J. Suehle,et al.  Ohmic contacts to semiconducting diamond using a Ti/Pt/Au trilayer metallization scheme , 1996 .

[52]  Janssen,et al.  Nitrogen-related dopant and defect states in CVD diamond. , 1996, Physical review. B, Condensed matter.

[53]  Ming Xie,et al.  Design optimization for an X-ray free electron laser driven by SLAC linac , 1994, Proceedings Particle Accelerator Conference.

[54]  Zhang,et al.  Negative-electron-affinity effects on the diamond (100) surface. , 1994, Physical review. B, Condensed matter.

[55]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[56]  E. Taft,et al.  Kramers-Kronig Analysis of Reflectance Data for Diamond , 1964 .

[57]  P. J. Dean,et al.  Intrinsic edge absorption in diamond , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  Lee A. DuBridge,et al.  Theory of the energy distribution of photoelectrons , 1933 .

[59]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[60]  J. Wu,et al.  Commissioning the Linac Coherent Light Source injector , 2008 .

[61]  F. Himpsel Angle-resolved measurements of the photoemission of electrons in the study of solids , 1983 .

[62]  A. E. Martin,et al.  The dielectric constant of diamond , 1940 .