Maskless lithography of CMOS-compatible materials for hybrid plasmonic nanophotonics: aluminum nitride/aluminum oxide/aluminum waveguides

Abstract. We demonstrate maskless lithography fabrication of nanolayered heterostructured hybrid plasmonic waveguides. This includes the measured optical properties of pulsed magnetron sputtered 15 nm films of aluminum oxide and aluminum nitride. Hybrid plasmonic waveguides, where the modes highest intensity is largely confined to the thin aluminum oxide layer, were constructed by maskless lithography using an aperture-type near-field scanning optical microscope.

[1]  Chih-Kang Shih,et al.  All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. , 2014, Nano letters.

[2]  E. Muljarov,et al.  Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper , 2016, 1612.06925.

[3]  Valentyn S Volkov,et al.  Ultralow-Loss CMOS Copper Plasmonic Waveguides. , 2016, Nano letters.

[4]  Zeev Zalevsky,et al.  Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures , 2015, Scientific Reports.

[5]  Ran Hao,et al.  Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. , 2012, Optics letters.

[6]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[7]  Vladimir M. Shalaev,et al.  Alternative Plasmonic Materials: Alternative Plasmonic Materials: Beyond Gold and Silver (Adv. Mater. 24/2013) , 2013 .

[8]  Anders Kristensen,et al.  Propagation of Channel Plasmons at the Visible Regime in Aluminum V-Groove Waveguides , 2016 .

[9]  Anatoly V Zayats,et al.  Silicon-based plasmonic waveguides. , 2010, Optics express.

[10]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[11]  Aydogan Ozcan,et al.  Nanofabrication Using Near-Field Optical Probes , 2012, Journal of laboratory automation.

[12]  Alexey V. Krasavin,et al.  Benchmarking System-Level Performance of Passive and Active Plasmonic Components: Integrated Circuit Approach , 2016, Proceedings of the IEEE.

[13]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[14]  Vladimir Liberman,et al.  Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry. , 2013, Optics express.

[15]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[16]  Lei Liu,et al.  Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region , 2013 .

[17]  Volker J. Sorger,et al.  λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Yuebing Zheng,et al.  Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes. , 2016, Nano letters.

[19]  Vladimir M. Shalaev,et al.  Ultra-compact modulators based on novel CMOS-compatible plasmonic materials , 2013 .

[20]  Dominique Barchiesi,et al.  Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth , 2014 .

[21]  Peter Nordlander,et al.  Color‐Selective and CMOS‐Compatible Photodetection Based on Aluminum Plasmonics , 2014, Advanced materials.

[22]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[23]  Viktoriia E. Babicheva,et al.  Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. , 2013, Optics express.

[24]  Alexey V. Krasavin,et al.  Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides , 2015 .

[25]  R. Agarwal,et al.  Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering , 2014, The journal of physical chemistry letters.