Chrono: An Open Source Multi-physics Dynamics Engine

We provide an overview of a multi-physics dynamics engine called Chrono. Its forte is the handling of complex and large dynamic systems containing millions of rigid bodies that interact through frictional contact. Chrono has been recently augmented to support the modeling of fluid-solid interaction (FSI) problems and linear and nonlinear finite element analysis (FEA). We discuss Chrono’s software layout/design and outline some of the modeling and numerical solution techniques at the cornerstone of this dynamics engine. We briefly report on some validation studies that gauge the predictive attribute of the software solution. Chrono is released as open source under a permissive BSD3 license and available for download on GitHub.

[1]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[2]  Hammad Mazhar,et al.  Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact , 2015, ACM Trans. Graph..

[3]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[4]  Aki Mikkola,et al.  The Simplest 3- and 4-Noded Fully-Parameterized ANCF Plate Elements , 2012 .

[5]  Hammad Mazhar,et al.  On the use of computational multi-body dynamics analysis in SLS-based 3D printing , 2016 .

[6]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[7]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[8]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[9]  Inna Sharf,et al.  Literature survey of contact dynamics modelling , 2002 .

[10]  Ahmed A. Shabana,et al.  Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation , 2005 .

[11]  M. Anitescu,et al.  Formulating Three-Dimensional Contact Dynamics Problems , 1996 .

[12]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[13]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[14]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[15]  G. Grest,et al.  Granular flow down an inclined plane: Bagnold scaling and rheology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Toby D. Heyn,et al.  On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact , 2013 .

[17]  Dan Negrut,et al.  On the Importance of Displacement History in Soft-Body Contact Models , 2016 .

[18]  Mihai Anitescu,et al.  A complementarity-based rolling friction model for rigid contacts , 2013 .

[19]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[20]  Johannes Gerstmayr,et al.  Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation , 2006 .

[21]  Toby Heyn,et al.  Enabling Computational Dynamics in Distributed Computing Environments Using a Heterogeneous Computing Template , 2011 .

[22]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[23]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[24]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[25]  Harald Kruggel-Emden,et al.  Review and extension of normal force models for the Discrete Element Method , 2007 .

[26]  Harald Kruggel-Emden,et al.  A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior , 2008 .

[27]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[28]  H. Makse,et al.  Jamming transition in emulsions and granular materials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Douglas J. Durian,et al.  Erratum: Low-Speed Impact Craters in Loose Granular Media [Phys. Rev. Lett.PRLTAO0031-9007 90, 194301 (2003)] , 2003 .

[30]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[31]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[32]  S. Nemat-Nasser Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials , 2004 .

[33]  Hammad Mazhar,et al.  CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics , 2013 .

[34]  Hamid M. Lankarani,et al.  Compliant contact force models in multibody dynamics : evolution of the Hertz contact theory , 2012 .

[35]  Dinesh K. Pai,et al.  Geometric Numerical Integration of Inequality Constrained, Nonsmooth Hamiltonian Systems , 2010, SIAM J. Sci. Comput..

[36]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[37]  H Sugiyama,et al.  ANCF tire models for multibody ground vehicle simulation , 2015 .

[38]  Jernej Barbic,et al.  Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.

[39]  J. J. Traybar,et al.  An Experimental Study of the Nonlinear Stiffness of a Rotor Blade Undergoing Flap, Lag and Twist Deformations , 1975 .

[40]  Wei Hu,et al.  Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method , 2014 .

[41]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[42]  Daniel Melanz On the Validation and Applications of a Parallel Flexible Multi-Body Dynamics Implementation , 2012 .

[43]  Dan Negrut,et al.  A Lagrangian–Lagrangian Framework for the Simulation of Rigid and Deformable Bodies in Fluid , 2014 .

[44]  J. A. Fleischmann,et al.  DEM-PM Contact Model with Multi-Step Tangential Contact Displacement History , 2015 .

[45]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[46]  M. Lastiwka,et al.  Robustness and accuracy of SPH formulations for viscous flow , 2009 .

[47]  Dan Negrut,et al.  Numerical investigation of microfluidic sorting of microtissues , 2016, Comput. Math. Appl..

[48]  Hiroyuki Sugiyama,et al.  Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model , 2015 .

[49]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[50]  Ahmed A. Shabana,et al.  Flexible Multibody Simulation and Choice of Shape Functions , 1999 .

[51]  Dan Negrut,et al.  On the Validation of a Differential Variational Inequality Approach for the Dynamics of Granular Material , 2010 .

[52]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[53]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[54]  J. Bray,et al.  Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme , 2004 .

[55]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[56]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[57]  Dan Negrut,et al.  Boundary condition enforcing methods for smoothed particle hydrodynamics , 2015 .

[58]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[59]  Dan Negrut,et al.  A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components , 2014 .

[60]  ProjectChrono Justin Madsen Validation of a Single Contact Point Tire Model Based on the Transient Pacejka Model in the Open-Source Dynamics Software , 2014 .

[61]  Dan Negrut,et al.  A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow , 2015 .

[62]  Mihai Anitescu,et al.  An iterative approach for cone complementarity problems for nonsmooth dynamics , 2010, Comput. Optim. Appl..

[63]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[64]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[65]  Mihai Anitescu,et al.  A compliant visco-plastic particle contact model based on differential variational inequalities , 2013 .

[66]  Marco Morandini,et al.  COMPUTATIONAL ASPECTS AND RECENT IMPROVEMENTS IN THE OPEN-SOURCE MULTIBODY ANALYSIS SOFTWARE "MBDYN" , 2005 .

[67]  A. Mikkola Lugre Tire Model for HMMWV , 2014 .

[68]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[69]  Dan Negrut,et al.  On an Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics (DETC2005-85096) , 2007 .

[70]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[71]  Jean-Pierre Bardet,et al.  Experimental Soil Mechanics , 1997 .

[72]  J. Ooi,et al.  Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction , 2008 .

[73]  Hiroyuki Sugiyama,et al.  Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation , 2015 .

[74]  A. Mikkola,et al.  Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems , 2013 .

[75]  I Black,et al.  State-of-the-art production processes for convoluted, corrosion-resistant, high-pressure oilfield pipework , 2005 .