A simple sequential stopping rule for Monte Carlo Simulation

In this paper, a sequential stopping rule for the estimation of a probability p by means of Monte Carlo simulation is analyzed. It is shown that the proposed estimator is almost unbiased, and guarantees a given relative precision irrespective of p. Under very mild conditions, the method also guarantees a certain confidence level for a given relative estimation error, provided that p does not exceed a maximum value. An extension to importance sampling is discussed.

[1]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[2]  John S. Sadowsky,et al.  A new method for Viterbi decoder simulation using importance sampling , 1990, IEEE Trans. Commun..

[3]  P. Balaban,et al.  A Modified Monte-Carlo Simulation Technique for the Evaluation of Error Rate in Digital Communication Systems , 1980, IEEE Trans. Commun..

[4]  C. Cornell,et al.  Adaptive Importance Sampling , 1990 .

[5]  Kung Yao,et al.  On Importance Sampling in Digital Communications - Part I: Fundamentals , 1993, IEEE J. Sel. Areas Commun..

[6]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Mansoor Shafi,et al.  Quick Simulation: A Review of Importance Sampling Techniques in Communications Systems , 1997, IEEE J. Sel. Areas Commun..

[8]  Luis Mendo,et al.  Uplink and Downlink Traffic Capacity Performance in WCDMA Systems , 2002 .

[9]  Michel C. Jeruchim,et al.  Developments in the Theory and Application of Importance Sampling , 1987, IEEE Trans. Commun..

[10]  John S. Sadowsky,et al.  On Importance Sampling in Digital Communications - Part II: Trellis-Coded Modulation , 1993, IEEE J. Sel. Areas Commun..

[11]  Michel C. Jeruchim,et al.  Techniques for Estimating the Bit Error Rate in the Simulation of Digital Communication Systems , 1984, IEEE J. Sel. Areas Commun..

[12]  Purdue Univer A New Method for Viterbi Decoder Simulation Using Importance Sampling , 1990 .

[13]  Sumit Roy,et al.  Adaptive Importance Sampling , 1993, IEEE J. Sel. Areas Commun..

[14]  P. Glynn,et al.  The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations , 1992 .