Photosensitivity, chemical composition gratings and optical fiber based components

The different topics of this thesis include high-temperaturestable fiber Bragg gratings, photosensitivity and fiber basedcomponents. Fiber Bragg gratings (FBG) are wavelength dispersiverefractive i ...

[1]  Man F. Yan,et al.  Strong Bragg phase gratings in phosphorus-doped fiber induced by ArF excimer radiation , 1995 .

[2]  G. Brambilla,et al.  Photoinduced processes in Sn-doped silica fiber preforms , 2000 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J. Bayon,et al.  UV-induced reaction of H2 with germanosilicate and aluminosilicate glasses , 1998 .

[5]  R. Kashyap,et al.  Enhanced UV photosensitivity in boron codoped germanosilicate fibres , 1993 .

[6]  Liang Dong,et al.  Evidence by transmission electron microscopy of densification associated to Bragg grating photoimprinting in germanosilicate optical fibers , 1997 .

[7]  Walter Margulis,et al.  ToF-SIMS imaging of dopant diffusion in optical fibers , 2003 .

[8]  H. Limberger,et al.  Effects of drawing tension on the photosensitivity of Sn-Ge- and B-Ge-codoped core fibers. , 1998, Optics letters.

[9]  G. Grand,et al.  Low-loss PECVD silica channel waveguides for optical communications , 1990 .

[10]  R. R. Khrapko,et al.  Grating formation in a germanium free silicon oxynitride fibre , 1997 .

[11]  J. Albert,et al.  Ion implantation‐induced strong photosensitivity in high‐purity fused silica: Correlation of index changes with VUV color centers , 1996 .

[12]  U. Paek,et al.  Residual stress relaxation in the core of optical fiber by CO(2) laser irradiation. , 2001, Optics letters.

[13]  Sherrie J. Burgett,et al.  Enhanced growth rate for Bragg grating formation in optical fibers with titania-doped outer cladding , 1999 .

[14]  P. Lemaire,et al.  High pressure H/sub 2/ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/ doped optical fibres , 1993 .

[15]  C.A.P. Muller,et al.  Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating , 1998, IEEE Photonics Technology Letters.

[16]  V. Grubsky,et al.  Increase of photosensitivity in Ge-doped fibers under strain , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[17]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[18]  V. Grubsky,et al.  Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes. , 1997, Optics letters.

[19]  P. Russell,et al.  100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses , 1993 .

[20]  I. V. Nikolin,et al.  Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres , 2002 .

[21]  J. Stone,et al.  Interactions of hydrogen and deuterium with silica optical fibers: A review , 1987 .

[22]  H. N. Rourke,et al.  Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber , 1997 .

[23]  V. Grubsky,et al.  Thermally stable gratings in optical fibers without temperature annealing , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[24]  K. M. Golant BULK SILICAS PREPARED BY LOW PRESSURE PLASMA CVD: FORMATION OF STRUCTURE AND POINT DEFECTS , 2000 .

[25]  R. Kashyap Fiber Bragg Gratings , 1999 .

[26]  Hiroshi Kawazoe,et al.  Characterization of silica glasses sintered under Cl2 ambients , 1991 .

[27]  S. Shibata,et al.  Fluorine and chlorine effects on radiation-induced loss for GeO 2 -doped silica optical fibers , 1985 .

[28]  Robert S. Windeler,et al.  Integrated all-fiber variable attenuator based on hybrid microstructure fiber , 2001 .

[29]  Kenji Nishide,et al.  Novel long-period fiber grating using periodically released residual stress of pure-silica core fiber , 1998 .

[30]  Bertrand Poumellec,et al.  The UV-induced refractive index grating in Ge: preforms: additional CW experiments and the macroscopic origin of the change in index , 1996 .

[31]  L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .

[32]  V. Grubsky,et al.  Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4 5.4-eV ultraviolet light. , 1999, Optics letters.

[33]  M Aslund,et al.  Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber. , 2000, Optics letters.

[34]  D. C. Shaver,et al.  Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica , 1989 .

[35]  C. Burrus,et al.  Formation of hydroxyl due to reaction of hydrogen with silica optical fiber preforms , 1985 .

[36]  Tadashi Enomoto,et al.  Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation , 1998 .

[37]  K. Hill,et al.  Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication , 1978 .

[38]  Johannes Kirchhof,et al.  Diffusion behaviour of fluorine in silica glass , 1995 .

[39]  I. Riant,et al.  Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging , 1997 .

[40]  P. J. Lemaire,et al.  Thermal stability analysis of UV-induced fiber Bragg gratings , 1997 .

[41]  H. Limberger,et al.  UV-irradiation-induced structural transformation of germanoscilicate glass fiber. , 1997, Optics letters.

[42]  Norberto Chiodini,et al.  Sol-gel synthesis of monolithic tin-doped silica glass , 1999 .

[43]  K. Awazu,et al.  Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2 :GeO2 glasses heated under an H2 atmosphere , 1990 .

[44]  A. L. Tomashuk,et al.  Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD , 1995 .

[45]  H. Hosono,et al.  Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation. , 1999, Optics letters.

[46]  I. Bennion,et al.  High-reflectivity surface-relief gratings in single-mode optical fibres , 1987 .

[47]  Gaspar Rego,et al.  Long-period fiber gratings stable at very high temperatures , 2001 .

[48]  Enhanced photorefractivity in tin-doped silica optical fibers (review) , 2001 .

[49]  J. Nishii,et al.  High photosensitivity and nanometer-scale phase separation in GeO(2)-SiO(2) glass thin films. , 1999, Optics letters.

[50]  S. Unger,et al.  Hydrogen-induced hydroxyl profiles in doped silica layers , 1995 .

[51]  Kyriacos Kalli,et al.  Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing , 2000 .

[52]  E. M. Starr,et al.  The Effect of Laser Heating on Optical Properties of Germania Doped Silica Optical Waveguides , 1986 .

[53]  G. Meltz,et al.  Formation of Bragg gratings in optical fibers by a transverse holographic method. , 1989, Optics letters.

[54]  J. Canning,et al.  Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique. , 1995, Optics letters.

[55]  R. R. Khrapko,et al.  Thermo-induced long-period fibre gratings , 1997 .

[56]  C. Burrus,et al.  Temperature dependence of hydroxyl formation in the reaction of hydrogen with silica glass , 1987 .

[57]  M. Fokine,et al.  Large increase in photosensitivity through massive hydroxyl formation. , 2000, Optics letters.

[58]  B. Poumellec,et al.  The Photorefractive Bragg Gratings in the Fibers for Telecommunications , 1996 .

[59]  J. Canning,et al.  Modal interferometer for in situ measurements of induced core index change in optical fibers. , 1997, Optics letters.

[60]  M. Tomozawa Concentration Dependence of the Diffusion Coefficient of Water in SiO2 Glass , 1985 .

[61]  R P Salathé,et al.  Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings. , 1995, Optics letters.

[62]  G. Brambilla,et al.  Enhanced photosensitivity in germanosilicate fibers exposed to CO2 laser radiation. , 1999, Optics letters.

[63]  Ian Bennion,et al.  Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre , 1998 .

[64]  A. Ikushima,et al.  Structural relaxation enhanced by Cl ions in silica glass , 1998 .

[65]  P. Russell,et al.  High second-order nonlinearities in poled silicate fibers. , 1994, Optics letters.

[66]  G. Sigel,et al.  Nonuniform distribution of oxygen hole centers in silica optical fibers , 1993 .

[67]  D C Johnson,et al.  Photosensitization of optical fiber and silica-on-silicon/silica waveguides. , 1993, Optics letters.

[68]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[69]  Jacques Albert,et al.  Grating formation in pure silica-core fibers. , 2002, Optics letters.

[70]  UV-photoinduced fibre gratings for gain equalisation , 2002 .

[71]  Tanaka Shigeru,et al.  Hydroxyl group formation caused by hydrogen diffusion into optical glass fibre , 1984 .

[72]  E. M. Dianov,et al.  Long-period fiber gratings and mode-field converters fabricated by thermodiffusion in phosphosilicate fibers , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[73]  Gilberto Brambilla,et al.  Photorefractive index gratings in SnO2:SiO2 optical fibers , 2000 .

[74]  Bragg gratings in ternary SiO(2):SnO(2):Na(2)O optical glass fibers. , 2000, Optics letters.

[75]  D. K. Lam,et al.  Characterization of single-mode optical fiber filters. , 1981, Applied optics.

[76]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[77]  V. Grubsky,et al.  Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[78]  K. Awazu,et al.  Precursor to paramagnetic centers induced in gamma‐irradiated doped silica glasses , 1993 .

[79]  J. E. Shelby,et al.  Diffusion of water in vitreous silica , 1994 .

[80]  Dopant effect on transmission loss increase due to hydrogen permeation , 1984 .

[81]  I. Riant,et al.  Demonstration of two distributions of defect centers in hydrogen-loaded high germanium content fibers , 1997, Proceedings of Optical Fiber Communication Conference (.

[82]  U. Paek,et al.  Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress , 2000 .

[83]  Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres , 1994 .

[84]  D N Payne,et al.  Strong photosensitive gratings in tin-doped phosphosilicate optical fibers. , 1995, Optics letters.

[85]  Gerald Meltz,et al.  Bragg grating formation and germanosilicate fiber photosensitivity , 1991, Other Conferences.

[86]  J. Shelby Reaction of hydrogen with hydroxyl‐free vitreous silica , 1980 .

[87]  Norberto Chiodini,et al.  Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms , 2001 .

[88]  D. A. Pinnow,et al.  Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides , 1975 .

[89]  Peter K. Bachmann,et al.  Low OH excess loss PCVD fibres prepared by fluorine doping , 1984 .

[90]  Paul J. Lemaire,et al.  Thermal reliability of Bragg gratings written in hydrogen-sensitized fibers , 1996, Optical Fiber Communications, OFC..

[91]  W. F. Liu,et al.  Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber. , 1997, Applied optics.

[92]  B. Eggleton,et al.  Microstructured optical fiber devices. , 2001, Optics express.

[93]  E. J. Friebele,et al.  Color Centers in Glass Optical Fiber Waveguides , 1985 .

[94]  M. Tomozawa,et al.  Water diffusion, oxygen vacancy annihilation and structural relaxation in silica glasses , 1994 .

[95]  Jean-Luc Archambault Photorefractive gratings in optical fibres , 1994 .

[96]  Hans G. Limberger,et al.  Bragg grating fast tunable filter , 1997 .

[97]  R. A. B. Devine,et al.  Ultraviolet Irradiation Induced Compaction and Photoetching in Amorphous, Thermal SiO2 , 1985 .

[98]  L. Weng,et al.  Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) , 1996 .

[99]  I. V. Nikolin,et al.  HIGHLY PHOTOSENSITIVE NITROGEN-DOPED GERMANOSILICATE FIBRE FOR INDEX GRATING WRITING , 1997 .

[100]  Bertrand Poumellec,et al.  Bragg grating inscriptions within strained monomode high NA germania-doped fibres: part I. Experimentation , 1997 .

[101]  D. Hand,et al.  Photoinduced refractive-index changes in germanosilicate fibers. , 1990, Optics letters.

[102]  M Aslund,et al.  Locking in photosensitivity within optical fiber and planar waveguides by ultraviolet preexposure. , 1999, Optics letters.

[103]  J. MacChesney,et al.  An overview of the modified chemical vapor deposition (MCVD) process and performance , 1982, IEEE Journal of Quantum Electronics.

[104]  D N Payne,et al.  Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity. , 1995, Applied optics.

[105]  Wei Xu,et al.  Frozen-in Electrical Field in Thermally Poled Fibers , 1999 .

[106]  Liang Dong,et al.  Photosensitivity in tantalum doped silica optical fibres , 1995 .

[107]  David N. Payne,et al.  Ultraviolet absorption in modified chemical vapor deposition preforms , 1994 .

[108]  E. Friebele,et al.  Index structure of fiber Bragg gratings in Ge-SiO(2) fibers. , 1997, Optics letters.

[109]  Eugeni M. Dianov,et al.  Microscopic mechanisms of photosensitivity in germanium-doped silica glass , 1996, Other Conferences.

[110]  Bertrand Poumellec,et al.  Densification involved in the UV-based photosensitivity of silica glasses and optical fibers , 1997 .

[111]  S. Boj,et al.  OPTICAL FIBER DESIGN FOR STRONG GRATINGS PHOTOIMPRINTING WITH RADIATION MODE SUPPRESSION , 1995 .

[112]  Robert H. Doremus,et al.  Diffusion of water in silica glass , 1995 .

[113]  Jens Engholm Pedersen,et al.  Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings , 2000 .

[114]  U. Paek,et al.  Residual stresses in a doubly clad fiber with depressed inner cladding (DIC) , 1999 .

[115]  N F Borrelli,et al.  Excimer-laser-induced densification in binary silica glasses. , 1999, Optics letters.

[116]  Victor Mizrahi,et al.  248 nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity , 1993 .

[117]  Simon Poole,et al.  Photolytic Index Changes in Optical Fibers , 1993 .

[118]  Utlra-Thermostable Long-Period Gratings Written in Nitrogen-Doped Silica Fibers , 1998 .

[119]  L. Reekie,et al.  Enhanced photosensitivity in tin-codoped germanosilicate optical fibers , 1995, IEEE Photonics Technology Letters.

[120]  W. A. Reed,et al.  Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers , 1995 .

[121]  R. P. Smith,et al.  Accelerated lifetime tests on UV written intra-core gratings in boron germania codoped silica fibre , 1995 .