Consideration of Three Seismic Isolation Performances as Design Objectives for Equivalent Linear Analysis of Bilinear Hysteretic Isolation Systems

The design displacement, its corresponding acceleration performance, and the re-centering performance of bilinear hysteretic isolation systems are adopted as previously determined design objectives for equivalent linear analysis. To demonstrate the applicability and generalization of the analysis procedure, two sets of values for damping modification factors are employed in the analysis: those provided by ASCE/SEI 7-16, and those estimated for different ranges of the ratios of effective periods of seismic isolation systems to pulse periods of ground motions. To investigate a broad range of seismic responses of base-isolated structures, 15 pulse-like near-fault ground motions are used for numerical demonstration. The analysis procedure is numerically verified to be practically feasible. A numerical comparison also shows that the three design objectives previously determined in the analysis procedure are sufficiently conservative compared with analysis results from nonlinear dynamic response history, even when subjected to pulse-like near-fault ground motions. Regarding the approximation to maximum inelastic acceleration and displacement responses, it is particularly more conservative for the former when the design displacement is greater and when adopting values of the damping modification factors provided in ASCE/SEI 7-16. For the approximation to dynamic residual displacement responses, the influences of pulse-like near-fault ground motions and different design objectives on the re-centering performance of bilinear hysteretic isolation systems still need further study.