Full-field characterization of femtosecond pulses after nonlinear propagation

The nonlinear Schrodinger equation is often used to model the evolution of ultrashort pulses. However, as peak powers increase and spot sizes decrease, details surrounding the propagation of femtosecond pulses become unknown. In this context, the measured amplitude and phase of the electric field on a femtosecond time scale is valuable information in the study of light-matter interactions. We use second-harmonic frequency-resolved optical gating (SHG-FROG) and spectral interferometry as tools for tracking the nonlinear propagation of intense femtosecond pulses in fused silica.