Wavelet-based Methods for Numerical Solutions of Differential Equations

Wavelet theory has been well studied in recent decades. Due to their appealing features such as sparse multiscale representation and fast algorithms, wavelets have enjoyed many tremendous successes in the areas of signal/image processing and computational mathematics. This paper primarily intends to shed some light on the advantages of using wavelets in the context of numerical differential equations. We shall identify a few prominent problems in this field and recapitulate some important results along these directions. Wavelet-based methods for numerical differential equations offer the advantages of sparse matrices with uniformly bounded small condition numbers. We shall demonstrate wavelets' ability in solving some one-dimensional differential equations: the biharmonic equation and the Helmholtz equation with high wave numbers (of magnitude $O(10^4)$ or larger).

[1]  Rong-Qing Jia,et al.  Wavelet bases of Hermite cubic splines on the interval , 2006, Adv. Comput. Math..

[2]  Bin Han,et al.  Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001 .

[3]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Mark A. Christon,et al.  The numerical performance of wavelets for PDEs: the multi-scale finite element , 2000 .

[5]  Gerlind Plonka-Hoch,et al.  On the construction of wavelets on a bounded interval , 1995, Adv. Comput. Math..

[6]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[7]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[8]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[9]  Rob Stevenson,et al.  A sparse Laplacian in tensor product wavelet coordinates , 2010, Numerische Mathematik.

[10]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[11]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[12]  Andrea Moiola,et al.  Can coercive formulations lead to fast and accurate solution of the Helmholtz equation? , 2018, J. Comput. Appl. Math..

[13]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[14]  Zuowei Shen,et al.  Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .

[15]  F. Keinert,et al.  Regularity of boundary wavelets , 2012 .

[16]  Larry L. Schumaker Wavelets on Closed Subsets of the Real Line , 2007 .

[17]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[18]  Dana Cerná,et al.  Sparse Wavelet Representation of Differential Operators with Piecewise Polynomial Coefficients , 2017, Axioms.

[19]  D. Cerná,et al.  On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates , 2016 .

[20]  Martin J. Gander,et al.  A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods , 2016, SIAM Rev..

[21]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[22]  Angela Kunoth,et al.  Wavelets on manifolds: An optimized construction , 2006, Math. Comput..

[23]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[24]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[25]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[26]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[27]  Preprint Mps Is the Helmholtz equation really sign-indefinite? , 2012 .

[28]  Bin Han,et al.  Derivative-orthogonal Riesz wavelets in Sobolev spaces with applications to differential equations , 2019, Applied and Computational Harmonic Analysis.

[29]  Bin Han,et al.  Biorthogonal multiwavelets on the interval for numerical solutions of Burgers' equation , 2017, J. Comput. Appl. Math..

[30]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[31]  Wei Zhao,et al.  Riesz bases of wavelets and applications to numerical solutions of elliptic equations , 2011, Math. Comput..

[32]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[33]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[34]  B. Han Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.

[35]  Bin Han,et al.  Construction of wavelets and framelets on a bounded interval , 2018, Analysis and Applications.

[36]  Dana Cerná,et al.  Galerkin method with new quadratic spline wavelets for integral and integro-differential equations , 2020, J. Comput. Appl. Math..

[37]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[38]  Bin Han Framelets and Wavelets , 2017 .

[39]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[40]  Y. Wong,et al.  Pollution-free finite difference schemes for non-homogeneous helmholtz equation , 2014 .

[41]  Ralf Hiptmair,et al.  A Survey of Trefftz Methods for the Helmholtz Equation , 2015, 1506.04521.

[42]  W. Dahmen Wavelet methods for PDEs — some recent developments , 2001 .

[43]  B. Han Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.

[44]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[45]  D. Hardin,et al.  Biorthogonal Multiwavelets on [−1, 1] , 1999 .

[46]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[47]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[48]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[49]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[50]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[51]  Rong-Qing Jia Spline wavelets on the interval with homogeneous boundary conditions , 2009, Adv. Comput. Math..